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Astrophysical Fluid Dynamics Part IIT Mathematics/Astrophysics
Professor Gordon Ogilvie Lent Term 2021

Example Sheet 4

1. Radial oscillations of a star

Show that purely radial (i.e. spherically symmetric) oscillations of a spherical star satisfy
the Sturm—Liouville equation
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How should &, behave near the centre of the star and near the surface r = R at which
p=07

€T+pw§ =0.

Show that the associated variational principle can be written in the equivalent forms
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where 7 is assumed to be independent of r. Deduce that the star is unstable to purely

radial perturbations if and only if v < 4/3. Why does it not follow from the first form of
the variational principle that the star is unstable for all values of 7?7
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Can you reach the same conclusion using only the virial theorem?

2. Wawves in an isothermal atmosphere

Show that linear waves of frequency w and horizontal wavenumber ky, in a plane-parallel
isothermal atmosphere satisfy the equation
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where H is the isothermal scale-height, N is the Brunt—Vaisala frequency and v is the
adiabatic sound speed.

Consider solutions of the vertically wavelike form
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where k, is real, so that the wave energy density (proportional to p|£]?) is independent
of z. Obtain the dispersion relation connecting w and k. Assuming that N? > 0, show
that propagating waves exist in the limits of high and low frequencies, for which
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respectively. Show that the minimum frequency at which acoustic waves propagate is
vs/2H.

Explain why the linear approximation must break down above some height in the atmo-
sphere.

3. Magnetic buoyancy instabilities

A perfect gas forms a static atmosphere in a uniform gravitational field —ge,, where
(x,y,z) are Cartesian coordinates. A horizontal magnetic field B(z) e, is also present.

Derive the linearized equations governing small displacements of the form
Re [£(2) exp(—iwt + ik,x + ikyy)] ,

where k, and k, are real horizontal wavenumbers, and show that
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where z = a and z = b are the lower and upper boundaries of the atmosphere, and JII is
the Eulerian perturbation of total pressure. (Self-gravitation may be neglected.)

You may assume that the atmosphere is unstable if and only if the integral on the right-
hand side can be made negative by a trial displacement & satisfying the boundary con-
ditions, which are such that [£76I1]2 = 0. You may also assume that the horizontal
wavenumbers are unconstrained. Explain why the integral can be minimized with respect
to & by letting £, — 0 and k, — oo in such a way that ¢II = 0.

Hence show that the atmosphere is unstable to disturbances with £, = 0 if and only if
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at some point.

Assuming that this condition is not satisfied anywhere, show further that the atmosphere
is unstable to disturbances with k, # 0 if and only if
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at some point.

How does these stability criteria compare with the hydrodynamic stability criterion N? <
07
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4. Wawves in a rotating fluid

Write down the equations of ideal gas dynamics in cylindrical polar coordinates (r, ¢, z),
assuming axisymmetry. Consider a steady, axisymmetric basic state in uniform rotation,
with density p(r, z), pressure p(r, z) and velocity u = rQ2es. Determine the linearized
equations governing axisymmetric perturbations of the form

Re [6p(r, z) e ™' |

etc. If the basic state is adiabatically stratified (i.e. s = constant) and self-gravity may
be neglected, show that the linearized equations reduce to
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where W = dp/p.

Eliminate du to obtain a second-order partial differential equation for WW. Is the equation
of elliptic or hyperbolic type? What are the relevant solutions of this equation if the
fluid has uniform density and fills a cylindrical container {r < a, 0 < z < H} with rigid
boundaries?

Answers to questions 1 and 2 may be submitted for marking.
Please send any comments and corrections to giol0@cam.ac.uk



