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Astrophysical Fluid Dynamics Part III Mathematics/Astrophysics
Professor Gordon Ogilvie Lent Term 2021

Example Sheet 4

1. Radial oscillations of a star

Show that purely radial (i.e. spherically symmetric) oscillations of a spherical star satisfy
the Sturm–Liouville equation

d

dr

[

γp

r2
d

dr
(r2ξr)

]

−
4

r

dp

dr
ξr + ρω2ξr = 0 .

How should ξr behave near the centre of the star and near the surface r = R at which
p = 0?

Show that the associated variational principle can be written in the equivalent forms

ω2

∫ R

0

ρ|ξr|
2 r2 dr =

∫ R

0

[

γp

r2

∣

∣

∣

∣

d

dr
(r2ξr)

∣

∣

∣

∣

2

+ 4r
dp

dr
|ξr|

2

]

dr

=

∫ R

0

[

γpr4
∣

∣

∣

∣

d

dr

(

ξr
r

)∣

∣

∣

∣

2

+ (4− 3γ)r
dp

dr
|ξr|

2

]

dr ,

where γ is assumed to be independent of r. Deduce that the star is unstable to purely
radial perturbations if and only if γ < 4/3. Why does it not follow from the first form of
the variational principle that the star is unstable for all values of γ?

Can you reach the same conclusion using only the virial theorem?

2. Waves in an isothermal atmosphere

Show that linear waves of frequency ω and horizontal wavenumber kh in a plane-parallel
isothermal atmosphere satisfy the equation

d2ξz
dz2

−
1

H

dξz
dz

+
(γ − 1)

γ2H2
ξz + (ω2 −N2)

(

1

v2
s

−
k2

h

ω2

)

ξz = 0 ,

where H is the isothermal scale-height, N is the Brunt–Väisälä frequency and vs is the
adiabatic sound speed.

Consider solutions of the vertically wavelike form

ξz ∝ ez/2Heikzz ,

where kz is real, so that the wave energy density (proportional to ρ|ξ|2) is independent
of z. Obtain the dispersion relation connecting ω and k. Assuming that N2 > 0, show
that propagating waves exist in the limits of high and low frequencies, for which

ω2 ≈ v2
s
k2 (acoustic waves) and ω2 ≈

N2k2

h

k2
(gravity waves)
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respectively. Show that the minimum frequency at which acoustic waves propagate is
vs/2H.

Explain why the linear approximation must break down above some height in the atmo-
sphere.

3. Magnetic buoyancy instabilities

A perfect gas forms a static atmosphere in a uniform gravitational field −g ez, where
(x, y, z) are Cartesian coordinates. A horizontal magnetic field B(z) ey is also present.

Derive the linearized equations governing small displacements of the form

Re [ξ(z) exp(−iωt+ ikxx+ ikyy)] ,

where kx and ky are real horizontal wavenumbers, and show that

ω2

∫ b

a

ρ|ξ|2 dz = [ξ∗z δΠ]
b
a+

∫ b

a







|δΠ|2

γp+ B2

µ0

−

∣

∣

∣
ρgξz +

B2

µ0

ikyξy

∣

∣

∣

2

γp+ B2

µ0

+
B2

µ0

k2

y|ξ|
2 − g

dρ

dz
|ξz|

2






dz,

where z = a and z = b are the lower and upper boundaries of the atmosphere, and δΠ is
the Eulerian perturbation of total pressure. (Self-gravitation may be neglected.)

You may assume that the atmosphere is unstable if and only if the integral on the right-
hand side can be made negative by a trial displacement ξ satisfying the boundary con-
ditions, which are such that [ξ∗z δΠ]

b
a = 0. You may also assume that the horizontal

wavenumbers are unconstrained. Explain why the integral can be minimized with respect
to ξx by letting ξx → 0 and kx → ∞ in such a way that δΠ = 0.

Hence show that the atmosphere is unstable to disturbances with ky = 0 if and only if

−
d ln ρ

dz
<

ρg

γp+ B2

µ0

at some point.

Assuming that this condition is not satisfied anywhere, show further that the atmosphere
is unstable to disturbances with ky 6= 0 if and only if

−
d ln ρ

dz
<

ρg

γp

at some point.

How does these stability criteria compare with the hydrodynamic stability criterion N2 <
0?
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4. Waves in a rotating fluid

Write down the equations of ideal gas dynamics in cylindrical polar coordinates (r, φ, z),
assuming axisymmetry. Consider a steady, axisymmetric basic state in uniform rotation,
with density ρ(r, z), pressure p(r, z) and velocity u = rΩ eφ. Determine the linearized
equations governing axisymmetric perturbations of the form

Re
[

δρ(r, z) e−iωt
]

,

etc. If the basic state is adiabatically stratified (i.e. s = constant) and self-gravity may
be neglected, show that the linearized equations reduce to

−iω δur − 2Ω δuφ = −
∂W

∂r
,

−iω δuφ + 2Ω δur = 0 ,

−iω δuz = −
∂W

∂z
,

−iωW +
v2
s

ρ

[

1

r

∂

∂r
(rρ δur) +

∂

∂z
(ρ δuz)

]

= 0 ,

where W = δp/ρ.

Eliminate δu to obtain a second-order partial differential equation for W . Is the equation
of elliptic or hyperbolic type? What are the relevant solutions of this equation if the
fluid has uniform density and fills a cylindrical container {r < a, 0 < z < H} with rigid
boundaries?

Answers to questions 1 and 2 may be submitted for marking.

Please send any comments and corrections to gio10@cam.ac.uk
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