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3P1b Quantum Field Theory: Example Sheet 2 Michaelmas 2024

Corrections and suggestions should be emailed to ac2553@cam. ac. uk.

1. Consider a real scalar field with Lagrangian
1 1
L= 50:00"¢ — §m2¢2 : (1)

Show that, after normal ordering, the conserved four-momentum P* = [d*z T
takes the operator form

d3p 1

where p® = Ej in this expression. From Eq. (2), verify that if ¢(z) is now in the
Heisenberg picture, then

[P", ¢(x)] = —id"é(x) .
2. For a real scalar field with Lagrangian (1), show that in the Heisenberg picture,
o(z) = i[H, ¢(x)] = n(x) and #(z) = i[H, 7 (x)] = Vo (x) —m$(x).
Hence show that the operator ¢(z) satisfies the Klein-Gordon equation.

3. Let ¢(x) be a real scalar field in the Heisenberg picture with Lagrangian (1). Show
that the relativistically normalised states |p) = 2Epﬂ;2|0> satisfy

(0l d(z) [p) = e .
4% In Example Sheet 1, you showed that the classical angular momentum of a field is
given by
1

Write down the explicit form of the angular momentum for a free real scalar field with
Lagrangian as in Eq.(1). Show that, after normal ordering, the quantum operator Q;
can be written as

@i= 56”"“/ (2m)2 7 (pja_pk_p 8_pj) -

Hence confirm that the quanta of the scalar field have spin zero (i.e. a one-particle
state |p) has zero angular momentum in its rest frame).
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5. Show that the time ordered product T(¢(x1)d(x2)) and the normal ordered product
. ¢(x1)P(x2) : are both symmetric under the interchange of z; and xs. Deduce that
the Feynman propagator Agr(z; — x2) has the same symmetry property.

6 The Schwinger-Dyson equation states that

—iS 0 (@ = 25) (b1 By 1By B )
j=1

where ¢; = ¢(x;) and ¢, = ¢(x). Recall that the brackets stand for a shorthand of
time-ordering, i.e.,

and for simplicity we are assuming that the interacting part of the Lagrangian (Liy)
does not include derivatives of the fields.

In lectures we showed (3) for two fields for a QFT that is local and causal. Derive
explicitly (3) for three fields by using the same assumptions.

7. Consider the scalar Yukawa theory given by the Lagrangian
1 1
L= 070" + 50,00"¢ — M>y*ep — §m2¢2 — g Yo .

Calculate the amplitude for meson decay ¢ — 11 to leading order in ¢ using the LSZ
formula and the Schwinger-Dyson equation.

Show that the amplitude is only non-zero for m > 2M and explain the physical
interpretation of this condition using conservation laws.

8. Optional: The interaction picture (Srednicki 9.5). See also Sec 3.1 and 3.7 of DT.

In this problem, we will derive a formula for (Q| T (¢ ... ¢,) |2) using time-dependent
perturbation theory for an interacting theory involving a single massive scalar field.

Suppose we have a Hamiltonian density H = Ho + H1, where

1,1 2 1 59
7"[0—27T +2<V¢) —|—2m¢ ) (4)

and H; is a function of 7 (0, %) and ¢(0, %) and their spatial derivatives.

The ground state of the whole system is |(2), and a constant is added to the Hamil-
tonian such that H |Q2) = 0. The ground state of Hy is given by |0) and a constant is
also added such that Hy|0) = 0. The Heisenberg picture field is

o(t, ) = "0, T)e . (5)
We also define the interaction-picture field as

or(t, T) = et p(0, Z)e ot (6)
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(a) Show that ¢(x) obeys the Klein-Gordon equation, and hence is a free field.
(b) Show that

¢(x) = UN()pr(x)U(2) ,
where U(t) = e'fote= 1t i5 unitary.
(c¢) Show that U(t) obeys the differential equation
d
i—U(t) = H(H)U(t) ,
dt
where H;(t) = et [{;e~"t is the interaction Hamiltonian in the interaction
picture.

(d) H, was specified by a particular function of the fields 7 (0, Z) and ¢(0, Z). Show
that H;(t) is given by the same function of the interaction-picture fields (¢, Z)
and ¢;(t, 7).

(e) Show that, for ¢ > 0,
t
U(t) = Texp (—z/ dt’HI(t’)>
0

is a solution to the differential equation (7). What is the comparable expression
for t <07

(f) Define U(ty,t1) := U(ta)UT(t1). Show that, for ¢, > ¢y,
to
U(tg, t1> =T exp (—Z/ dt/HI(t/)>
t1
What is the comparable expression for t; > t57

(g) For any time ordering, show that
Ults, t1) = Ults, t2)U(t2, 1) ,
UT(tl,tg) = U(tg,tl) 5
and
U'(t,0) = U'(00,0)U (o0, 1)
U(t,0) =U(t,—o0)U(—00,0) .
(h) Replace Hy with (1 — i€)Hy, and show that (] UT(co,0) = (©|0) (0] and that
U(—00,0)[2) = |0) (0]€2).
(i) Show that

qb([[’n) e ¢<5E1> = UT(tn, O)qb[(fl'n)U(tn, tn_1)¢[($n_1) e U(tQ, tl)qb[(flfl)U(tl, O) s

and

(Q @) ... G(x1) [Q2) = [{Q]0) [* (0] U (00, tn) o1 (wn)U (tn, tn1)P1(zn1) - .-
Uta, t1)or (1)U (t1, —0) |0) .
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(j) Show that
(D) - D)) [2) = | (6210} (0] T(6r(a) . ba(w)e 4 0)
(k) Show that
(@02 = (o] T/ o))

Thus we have

(0] T(pr(xn) - - ¢1($1)€_ifd4xm) 10) .

(Q T(d(xn) ... d(x1)) Q) = (0] Te=i T %1 |0)

The right-hand side of this equation involves only interaction-picture fields, hence
one can Taylor expand the exponentials and use free-field theory to compute the
resulting correlation functions.
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