PART I: Symmetries and particles.

NOTES BY PROF. HUGH OSBORN

Books

Books developing group theory by physicists from the perspective of particle physics are

H. F. Jones, Groups, Representations and Physics, 2nd ed., IOP Publishing (1998).

A fairly easy going introduction.

H. Georgi, Lie Algebras in Particle Physics, Perseus Books (1999).

Describes the basics of Lie algebras for classical groups.

J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations, 2nd ed., CUP
(2003).

This is more comprehensive and more mathematically sophisticated, and does not describe
physical applications in any detail.

Z-Q. Ma, Group Theory for Physicists, World Scientific (2007).

Quite comprehensive.

P. Ramond, Group Theory: A Physicist’s Survey. (CUP, 2010).

A new book. Excellent and original style. Contains significant material beyond the course.

The following books contain useful discussions, in chapter 2 of Weinberg there is a proof
of Wigner’s theorem and a discussion of the Poincaré group and its role in field theory,
and chapter 1 of Buchbinder and Kuzenko has an extensive treatment of spinors in four
dimensions.

S. Weinberg, The Quantum Theory of Fields, (vol. 1), CUP (2005).

J. Buchbinder and S. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, or
a Walk Through Superspace, 2nd ed., Institute of Physics Publishing (1998).

They are many mathematical books with titles containing reference to Groups, Represen-
tations, Lie Groups and Lie Algebras. The motivations and language is often very different,
and hard to follow, for those with a traditional theoretical physics background. Particular
books which may be useful are

B.C. Hall, Lie Groups, Lie Algebras, and Representations, Springer (2004), for an earlier
version see arXiv:math-ph/0005032.

This focuses on matrix groups.

More accessible than most

W. Fulton and J. Harris, Representation Theory, Springer (1991).

Historically the following book, first published in German in 1931, was influential in showing
the relevance of group theory to atomic physics in the early days of quantum mechanics.
For an English translation

E.P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spec-
tra, Academic Press (1959).



Prologue

The following excerpts are from Strange Beauty, by G. Johnson, a biography of Murray
Gell-Mann', the foremost particle physicist of the 1950’s and 1960’s who proposed SU(3)
as a symmetry group for hadrons and later quarks as the fundamental building blocks. It
reflects a time when most theoretical particle physicists were unfamiliar with groups beyond
the rotation group, and perhaps also a propensity for some to invent mathematics as they
went along.

As it happened, SU(2) could also be used to describe the isospin symmetry- the group
of abstract ways in which a nucleon can be “rotated” in isospin space to get a neutron or
a proton, or a pion to get negative, positive or neutral versions. These rotations were what
Gell-Mann had been calling currents. The groups were what he had been calling algebras.

He couldn’t believe how much time he had wasted. He had been struggling in the dark
while all these algebras, these groups- these possible classification schemes- had been studied
and tabulated decades ago. All he would have to do was to go to the library and look them

up.

In Paris, as Murray struggled to expand the algebra of the isospin doublet, SU(2), to
embrace all hadrons, he had been playing with a hierarchy of more complex groups, with
four, five, six, seven rotations. He now realized that they had been simply combinations
of the simpler groups U(1) and SU(2). No wonder they hadn’t led to any interesting new
revelations. What he needed was a new, higher symmetry with novel properties. The next
one in Cartan’s catalogue was SU(3), a group that can have eight operators.

Because of the cumbersome way he had been doing the calculations in Paris, Murray
had lost the will to try an algebra so complex and inclusive. He had gone all the way up to
seven and stopped.

"Murray Gell-Mann, 1929-, American, Nobel prize 1969.
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0 Notational Conventions

Hopefully we use standard conventions. For any M;;, ¢ belonging to an ordered set with
m elements, not necessarily 1,...m, and similarly j belonging to an ordered set with n
elements, M = [M;;] is the corresponding m x n matrix, with of course ¢ labelling the rows,
j the columns. [ is the unit matrix, on occasion I,, denotes the n X n unit matrix.

For any multi-index T;, _;, then T(;, 4.y, T};,..i,) denote the symmetric, antisymmetric
parts, obtained by summing over all permutations of the order of the indices in T;, ;, ,
with an additional —1 for odd permutations in the antisymmetric case, and then dividing
by n!. Thus for n = 2,

Ty = 5(Tij + Tji) . Tyjp = 5(Tyj — Tja) - (0.1)

We use u, v, 0, p as space-time indices, i, j, k are spatial indices while «, 3,y are spinorial
indices.

For a set of elements x then {x : P} denotes the subset satisfying a property P.

A vector space V may be defined in terms of linear combinations of basis vectors {v,},
r=1,...,dimV so that an arbitrary vector can be expressed as »__a,v,. For two vector
spaces Vi, Vo with bases {vi,}, {vas} we may define the tensor product space Vi ® Vs, in
terms of the basis of pairs of vectors {vi,ves} for all r;s. An arbitrary vector in Vi ® Vs
is a linear combination v = ) a,s v1,v2s and dim(V; ® Vo) = dimV; dim V,. The direct
sum V1 @ Vs is defined so that ifve Vi ® Vs then v = v1 + vo with v; € V;. It has a basis
{v1r,v25} and dim(V; @ V) = dim V; + dim Vs.



1 Introduction

There are nowadays very few papers in theoretical particle physics which do no not mention
groups or Lie algebras and correspondingly make use of the mathematical language and
notation of group theory, and in particular of that for Lie groups. Groups are relevant
whenever there is a symmetry of a physical system, symmetry transformations correspond
to elements of a group and the combination of one symmetry transformation followed by
another corresponds to group multiplication. Associated with any group there are sets
of matrices which are in one to one correspondence with each element of the group and
which obey the same the same multiplication rules. Such a set a of matrices is called a
representation of the group. An important mathematical problem is to find or classify all
groups within certain classes and then to find all possible representations. How this is
achieved for Lie groups will be outlined in these lectures although the emphasis will be
on simple cases. Although group theory can be considered in the abstract, in theoretical
physics finding and using particular matrix representations are very often the critical issue.
In fact large numbers of groups are defined in terms of particular classes of matrices.

Group theoretical notions are relevant in all areas of theoretical physics but they are
particularly important when quantum mechanics is involved. In quantum theory physical
systems are associated with vectors belonging to a vector space and symmetry transforma-
tions of the system are associated with linear transformations of the vector space. With a
choice of basis these correspond to matrices so that directly we may see why group repre-
sentations are so crucial. Historically group theory as an area of mathematics particularly
relevant in theoretical physics first came to the fore in the 1930’s directly because of its ap-
plications in quantum mechanics (or matrix mechanics as the Heisenberg formulation was
then sometimes referred to). At that time the symmetry group of most relevance was that
for rotations in three dimensional space, the associated representations, which are associ-
ated with the quantum mechanical treatment of angular momentum, were used to classify
atomic energy levels. The history of nuclear and particle physics is very much a quest to
find symmetry groups. Initially the aim was to find a way of classifying particles with
nearly the same mass and initially involved isospin symmetry. This was later generalised to
the symmetry group SU(3), the eightfold way, and famously led to the prediction of a new
particle the Q7. The representations of SU(3) are naturally interpreted in terms of more
fundamental particles the quarks which are now the basis of our understanding of particle
physics.

Apart from symmetries describing observed particles, group theory is of fundamental
importance in gauge theories. All field theories which play a role in high energy physics are
gauge field theories which are each associated with a particular gauge group. Gauge groups
are Lie groups where the group elements depend on the space-time position and the gauge
fields correspond to a particular representation, the adjoint representation. To understand
such gauge field theories it is essential to know at least the basic ideas of Lie group theory,
although active research often requires going considerably further.



1.1 Basic Definitions and Terminology

A group G is a set of elements {g;} (here we suppose the elements are labelled by a discrete
index 7 but the definitions are easily extended to the case where the elements depend on
continuously varying parameters) with a product operation such that

9i,9; € G = 9i9j € G. (1.1)
Further we require that there is an identity e € G such that for any g € G
eg=ge=g, (1.2)
and also ¢ has an inverse g~! so that
99 ' =g 'g=e. (1.3)
Furthermore the product must satisfy associativity
9i(959r) = (9i9;)gr for all g;,g;,g9x € G, (1.4)
so that the order in which a product is evaluated is immaterial. A group is abelian if
gi9; = g59; forall g;,9; € G. (1.5)
For a discrete group with n elements then n = |G| is the order of the group.

Two groups G = {g;} and G' = {g’;} are isomorphic, G ~ G', if there is a one to one
correspondence between the elements consistent with the group multiplication rules.

For any group G a subgroup H C G is naturally defined as a set of elements belonging
to G which is also a group. For any subgroup H we may an equivalence relation between
9i» s

gi~gi & gi=gih for he H. (1.6)

Each equivalence class defines a coset and has |H| elements. The cosets form the coset space
G/H,

G/H ~G/ ~, dimG/H = |G|/|H] . (1.7)

In general G/H is not a group since g; ~ ¢, g; ~ ¢’; does not imply g;g; ~ ¢79’;.
A normal or invariant subgroup is a subgroup H C G such that
gHg ' =H forall ge@. (1.8)
In this case G/H becomes a group since for ¢5 = g;h;,¢’; = g;hj, with h;,h; € H, then
g9’y = gig;h for some h € G. For an abelian group all subgroups are normal subgroups.

The centre of a group G, 3(G), is the set of elements which commute with all elements
of G. This is clearly an abelian normal subgroup. For an abelian group 3(G) ~ G.

For two groups G1, G2 we may define a direct product group G1 ® Go formed by pairs
of elements {(g1;, g2x)}, belonging to (G1,G2), with the product rule (g14, 921) (915, 921) =
(911915, gokgar)- Clearly the identity element is (e1, e2) and (g14, gor) ' = (gfil,ggkl). So long
as it is clear which elements belong to G; and which to G2 we may write the elements of
G1 ® Gy as just g1g2 = gogi1. For finite groups |G1 ® Ga| = |G1| |Ga|.



1.2 Particular Examples

It is worth describing some particular finite discrete groups which appear frequently.

The group Z, is defined by integers 0,1,...n — 1 with the group operation addition
modulo n and the identity 0. Alternatively the group may be defined by the complex
numbers 2"/ of modulus one, under multiplication. Clearly it is abelian. Abstractly it
consists of elements a” with a° = @™ = e and may be generated just from a single element
a satisfying a™ = e.

The dihedral group D, of order 2n, is the symmetry group for a regular n-sided polygon
and is formed by rotations through angles 27r/n together with reflections. The elements
are then {a”,ba"} where a” = e,b? = e and we require ba = "~ 'b. For n > 2 the group is
non abelian, note that Dy ~ Zo ® Zo.

The remaining frequently occurring group is the permutation group S, on n objects. It
is easy to see that the order of S, is n!.

1.3 Further Definitions

Here we give some supplementary definitions connected with groups which are often nota-
tionally convenient.

If g = ggig~' for some g € G then g; is conjugate to g;, gj ~ g;- The equivalence
relation ~ divides G into conjugacy classes C,. Clearly the identity is in a conjugacy class
by itself, for an abelian group all elements have their own conjugacy class.

For a subgroup H C G then the elements g € G such that ghg~! € H for all h € H, or
gHg™' = H, form a subgroup of G, which contains H itself, called the normaliser of H in
G, written Ng(H). If H is a normal subgroup, Ng(H) = G.

An automorphism of a group G = {g;} is defined as a mapping between elements,
gi — ¢, such that the product rule is preserved, i.e.

439’ = (gig;)" for all g;,g; € G, (1.9)

so that G’ = {¢;} ~ G. Clearly we must have ¢/ = e. In general for any fixed g € G we
may define an inner automorphism by ¢ = ggig~'. It is straightforward to see that the
set of all automorphisms of G itself forms a group Aut G which must include G/3(G) as a
normal subgroup.

If H C Aut G, so that for any h € H and any g € G we have g - g" with g g = (g192)"

and (g™)"2 = g"Mh2 | we may define a new group called the semi-direct product of H with G,
denoted H x G. As with the direct product this is defined in terms of pairs of elements (h, g)
belonging to (H,G) but with the rather less trivial product rule (h,g)(',¢") = (hh', gg'").
Note that (h,g)~! = (™%, (¢71)""). Tt is often convenient to write the elements of H x G
as simple products so that (h,g) — hg = g"h. For the semi-direct product H x G, G is a
normal subgroup since hgh™' = ¢ € G and hence H ~ H x G/G.



As a simple illustration we have D,, ~ Zs X Z, where Zs = {e,b} with b? = e and

Ty ={a":7=0,...n — 1} with a” = e and we define, for any g = a” € Z,, g* = g~ L.

1.4 Representations

For any group G a representation is a set of non singular (i.e. non zero determinant) square
matrices {D(g)}, for all g € G, such that

D(g1)D(g2) = D(9192) , (1.10)
D(e) =1, (1.11)
D(g~') =D(9)™", (1.12)

where I denotes the unit matrix. If the matrices D(g) are n x n the representation has
dimension n.

The representation is faithful if D(g1) # D(g2) for g1 # go. There is always a trivial
representation or singlet representation in which D(g) = 1 for all g. If the representation is
not faithful then if D(h) = I for h € H it is easy to see that H must be a subgroup of G,
moreover it is a normal subgroup.

For complex matrices the conjugate representation is defined by the matrices D(g)*.
The matrices (D(g)~")7 also define a representation.

Since

det (D(g1)D(g2)) = det D(g1) det D(g2), detI =1, detD(g)"'= (detD(g))™ ",
(1.13)

{det D(g)} form a one-dimensional representation of G which may be trivial and in general
is not faithful.

Two representations of the same dimension D(g) and D’(g) are equivalent if
D'(g) = SD(g)S™! forall g€ @. (1.14)

For any finite group G = {g;} of order n we may define the dimension n regular repre-
sentation by considering the action of the group on itself

99i =y _ 9iDji(9). (1.15)
J

where [Dj;(g)] are representation matrices with a 1 in each column and row and with all
other elements zero. As an example for D3 = {e, a,a?,b,ba,ba’}, where a® = b? = e,ab =
ba?, then

001000 000100
i it

Dreg(a)={ 000010 | - Dreg(b) = 700000 (1.16)
000001 010000
000100 001000



A representation of dimension n acts on an associated n-dimensional vector space V, the
representation space. For any vector v € V we may define a group transformation acting on
v by

v vJ = D(g)v. (1.17)

Transformations as in (1.14) correspond to a change of basis for V. A representation is
reducible if there is a subspace Y C V, U # V), such that

D(g)jue U forall uel, (1.18)

otherwise it is an irreducible representation or irrep. For a reducible representation we may
define a representation of lower dimension by restricting to the invariant subspace. More
explicitly with a suitable choice of basis we may write, corresponding to (1.18),

D(g) = <D(()9> gg;) for w— (g) , (1.19)

where the matrices ﬁ(g) form a representation of G. If, for any invariant subspace, we may
restrict the representation matrices to the form shown in (1.19) with B(g) = 0 for all g the
representation is completely reducible.

For an abelian group G all irreducible representations are one-dimensional since all
matrices D(g) commute for all ¢ € G and they may be simultaneously diagonalised. For
the n-dimensional translation group 7, defined by n-dimensional vectors under addition
(with 0 as the unit), then for a representation it necessary, for a € R", a — D(a) satisfying
D(a1)D(az) = D(aj + az). Irreducible representations are all of the form D(a) = ¢, for
any n-vector b dual to a.

Representations need not be completely reducible, if { R} are n x n matrices forming a
group G and a is a n-component column vector then we may define a group in terms of
the matrices

D(R,a) = (1; ‘f) : (1.20)

with the group multiplication rule
D(Rl,al)D(RQ,GQ) = D(RlRQ,R1a2+a1), (1.21)

which has the abelian subgroup 7,, for R = I. The group defined by (1.21) is then Gg x T,
with a® = Ra.

In general for a completely reducible representation the representation space V decom-
poses into a direct sum of invariant spaces U, which are not further reducible, V ~ @*_ i,
and hence there is a matrix S such that

D1 (g) 0

SD(g)S™! = 0 Do) N , (1.22)



and where D, (g) form irreducible representations for each r. Writing 2R for the representa-
tion given by the matrices D(g) and R, for the irreducible representation matrices D,(g)
then (1.22) is written as

R=R1D---DRL. (1.23)

Useful results, which follow almost directly from the definition of irreducibility, charac-
terising irreducible representations are:

Schur’s Lemmas. If Di(g), D2(g) form two irreducible representations then (7)
SDi1(g) = D2(9)S (1.24)

for all g requires that the two representation are equivalent or S = 0. Also (%)
5D(g) = D(9)S, (1.25)

for all g for an irreducible representation D(g) then S o I.

To prove (i) suppose Vi, Vs are the representation spaces corresponding to the repre-
sentations given by the matrices Di(g), D2(g), so that V; < V5. Then the image of S,

ImS = {v:v = Su,u € V1}, is an invariant subspace of V,, Dy(g) Im S = Im S D>(g), by
virtue of (1.24). Similarly the kernel of S, Ker S = {u: Su = 0,u € V;} forms an invariant
subspace of V, both sides of (1.24) giving zero. For both representations to be irreducible
we must have Im S = Vs, Ker S = 0, so that S is invertible, det S # 0, (this is only possible
if dimV, = dim V). Since then Dy(g) = SD1(g)S~! for all g the two representations are
equivalent.

To prove (ii) suppose the eigenvectors of S with eigenvalue A span a space V). Applying
(1.25) to V) shows that D(g)V) are also eigenvectors of S with eigenvalue A so that D(g)Vy C
V, and consequently V) is an invariant subspace unless V, =V and then S = AI.

1.4.1 Induced Representations

A representation of a group G also gives a representation when restricted to a subgroup H.
Conversely for a subgroup H C G then it is possible to obtain representations of G in terms
of those for H by constructing the induced representation. Assume

vﬁD(h)v, heH, veV, (1.26)
with V the representation space for this representation of H. For finite groups the cosets
forming G/H may be labelled by an index i so that for each coset we may choose an element
gi € G such that all elements belonging to the i’th coset can be expressed as g;h for some
h € H. The choice of g; is arbitrary to the extent that we may let g; — g;h; for some fixed
h; € H. For any g € G then

aqg; :gjh fOI' some h € H7 27.7 = 17"'7N7 N = |G‘/’H’ (127)



Assuming (1.27) determines h the induced representation is defined so that that under the
action of a group transformation g € G,

v; ? D(h)v; , v = (9i,v), D(h)vj = (g5, D(h)v). (1.28)

In (1.28) h depends on i as well as g and v; € V; which is isomorphic to V for each i so
that the representation space for the induced representation is the N-fold tensor product
V&N The representation matrices for the induced representation are then given by N x N
matrices whose elements are D(h) for some h € H,

Dji(g) = D(h), gj'9gi=heH, (1.29)
7 0, 97 '99:¢ H.

To show that (1.28) is in accord with the group multiplication rule we consider a subsequent
transformation ¢’ so that

v; = D(h)v; — D(h"YD(h)vy, = D(W'h)vy,  for g/gj =gh = (J9)gi = geh’h. (1.30)
g g

If H = {e}, forming a trivial subgroup of G, and D(h) — 1, the induced representation
is identical with the regular representation for finite groups.

As a simple example we consider G = D,, generated by elements a,b with a” = b> =
e,ab = ba""'. H is chosen to be the abelian subgroup Z, = {a”" : r = 0,...,n — 1}. This
has one-dimensional representations labelled by k = 0,1,...,n — 1 defined by

v—e n v, (1.31)

With this choice for H there are two cosets belonging to D,,/Z,, labelled by i = 1,2 and we
may take g1 = e, g2 = b. Then for v; = (e, v) transforming as in (1.31) then with vy = (b,v)
(1.28) requires, using ab = ba ™1,

ki ki
(7)1,1)2)7(6271 v, e vg) = (vr,v2)A (v1,02) — (v2,01) = (1, 02) B, (1.32)

for 2 x 2 matrices A, B,

2mik
e n 0 01
S (F L) ). -

which satisfy A" = I, B> =1, AB = BA™ ! and so give a two dimensional representation
of D, for each k. By considering A — BAB it is clear that the representation for k — n—k
is equivalent to that in (1.33).

1.4.2 Unitary Representations

For application in quantum mechanics we are almost always interested in unitary represen-
tations where the matrices are require to satisfy

D(g9)' =D(g7") = D(g)". (1.34)



For such representation then the usual scalar product on V is invariant, for transformations
as in (1.17) 1191029 = vyl If U is an invariant subspace then the orthogonal subspace U,
as defined by the scalar product, is also an invariant subspace. Hence unitary representations
are always completely reducible.

Theorem: For a finite group all representations are equivalent to unitary representations.
To show this define
S= ZD(gi)TD(gi) ) (1.35)
i

where the sum is over all elements of the group G = {g;}. Noting that for any g, {gig} =
{g:}, since if g;g = gig then g; = g;, we have

SD(g)' = SD(g7") = ZD(gi)TD(gigfl)
= ZD 9:9)"D(g:)

ZD )'D(g;) = D(g)'S, (1.36)

using that D(g) form a representation and also (AB)" = Bf Af. Hence if we define (vy, vo) =
v17Svy then we have (vy, D(g~ ve) = (D(g)v1,v2) or (v19,v29) = (v1,v2). With respect to
this scalar product D(g) is unitary (or we may define D'(g) = S%D(g)Sfé and then show
D'(g)tD'(g) = I).

1.4.3 Orthogonality Relations

Schur’s lemmas have an important consequence in that the matrices for irreducible repre-
sentations obey an orthogonality relation. To derive this let

W= DM ADM (), B =3 DM (g)BDM(g7"),  (1.37)
where D (g), D) (g) are the matrices corresponding to the irreducible representation
R, R, and A, B are arbitrary matrices of the appropriate dimension. Then

AT D g) = DT () ATYN - DEV ()BT = BRIIDE () (1.38)

for any g € G. The proof of (1.38) follows exactly in the fashion as in (1.36), essentially
since {g;} = {gig}. Schur’s lemmas then require that A% BOYY) — 0 unless | = N
when both A(m’,m)’ BN are proportional to the identity. Hence we must have

r$s,uv

S(m, R — ZD(ER/ _1 D(m)( )— |nG‘ 59{/9@57“3 5uva (1'39)
R

where ng is the dimension of the representation 9. The constant in (1.39) is determined
by considering S,(,u us =D D(m)( ) = |G| Ors-



1.4.4 Characters

For any representation R the character is defined by

xn(g) = tr(DPV(g)) . (1.40)

Since traces are unchanged under cyclic permutations ys(9'g9’~!) = x:(g) so that the
character depends only on the conjugacy classes of each element. Similarly the character is
unchanged when calculated for any representations related by an equivalence transformation
as in (1.14). Since for a finite group any representation is equivalent to a unitary one we
must also have

xn(g™") = xm(g)*. (1.41)

As a consequence of the orthogonality relations, (1.37) and (1.39), then using (1.41) for
two irreducible representations R, R’

> xov(90)* xa(9i) = |G| o (1.42)

i
For an induced representation as in (1.29) if for the subgroup representation

x(h) =t (D(h)). (1.43)

then
Xinduced rep Z X g gl gilgg,€H " (144)

If this is applied to the case when H = {e} giving the regular representation we get

|G‘ y g=¢e
Xregular rep.(g) = { 0, g 7& e (145)

1.4.5 Tensor Products

If V4,V are representation spaces for representations i, MRy, given by matrices Di(g),
Dy(g), for a group G then we may define a tensor product representation R; ® Ry in
terms of the matrices D(g) = D1(g) ® D2(g) acting on the tensor product space Vi @ Vs
where D(g)v = >,  ars D1(g)v1rD2(g)vas. Since dimV = dimV; dim Vs, the tensor product
matrices have dimensions which are the products of the dimensions of the matrices forming
the tensor product. If Di(g), D2(g) are unitary then so is D(g).

In general the tensor product representation R ® fRs for two representations Ry, Ro is
reducible and may be decomposed into irreducible ones. If the irreducible representations
are listed as SR, then in general for the product of any two irreducible representations

R @ Re = R, @ Ry ~ P nss Re (1.46)



where n,,; are integers, which may be zero, and n,s; > 1 if the representation JR; occurs
more than once. For non finite groups there are infinitely many irreducible representations
but the sum in (1.46) is finite for finite dimensional representations. The trace of a tensor
product of matrices is the product of the traces of each individual matrix, in consequence
try, gy, (D(m”‘)(g) ® D(%S)(g)) = try, (D(%)(g))trys(D(%s)(g)), so that, in terms of the

characters xs, (g) = try, (D% (g)), (1.46) is equivalent to

Xt (9)X9r,(9) = Y st Xow, (9) - (1.47)
t
Using (1.42) the coefficients n,s ¢ can be determined by

Npst = |é‘ Z X (96) X, (9:) X, (93) - (1.48)

The result (1.46) is exactly equivalent to the decomposition of the associated represen-
tation spaces, with the same expansion for V, ® Vs into a direct sum of irreducible spaces
Vi. If R, ® R contains the trivial or singlet representation then it is possible to construct
a scalar product (v,v) between vectors v € V,,v' € V; which is invariant under group
transformations, (D% (g)v, D% (g)v') = (v,7').

1.5 Matrix Groups

It is easy to see that any set of non singular matrices which are closed under matrix multi-
plication form a group since they satisfy (1.2),(1.3),(1.4) with the identity e corresponding
to the unit matrix and the inverse of any element given by the matrix inverse, requiring
that the matrix is non singular so that the determinant is non zero. Many groups are de-
fined in terms of matrices. Thus GI(n,R) is the set of all real n x n non singular matrices,
Sl(n,R) are those with unit determinant and Gi(n,C), Sl(n,C) are the obvious extensions
to complex numbers. Since det(M;Ms) = det M; det My and det M~ = (det M)~! the
matrix determinants form an invariant abelian subgroup unless the the conditions defining
the matrix group require unit determinant for all matrices.

Matrix groups of frequent interest are
O(n), real orthogonal n x n matrices {M }, so that
MM =1. (1.49)

This set of matrices is closed under multiplication since (MyMs)? = My" M. For SO(n)
det M = 1. A general n x n real matrix has n? real parameters while a symmetric matrix has
in(n+1). MTM is symmetric so that (1.49) provides 3n(n+1) conditions. Hence O(n), and
also SO(n), have in(n — 1) parameters. If v,v’ belong to the n-dimensional representation
space for O(n) or SO(n) then scalar product v'7v is invariant under v — Muv, v/ — Muv'.

For n even £1 € SO(n) and these form the centre of the group so long as n > 2. Thus
3(S0(2n)) ~ Za, n = 2,3,..., while 3(SO(2n+ 1)) = {I}, n =1,2,... is trivial although
302n+1))={+l}~Zy,n=1,2,....
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U(n), complex unitary n X n matrices, so that
MM=1I. (1.50)

Closure follows from (M; M)t = MyTM;T. For SU(n) det M = 1. A general n x n complex
matrix has 2n? real parameters while a hermitian matrix has n2. MTM is hermitian so that
U(n) has n? parameters. (1.50) requires |det M| = 1 so imposing det M = 1 now provides
one additional condition so that SU(n) has n? — 1 parameters. The U(n) invariant scalar
product for complex n-dimensional vectors v, v’ is v'Tv.

The centre of U(n) or SU(n) consists of all elements proportional to the identity, by
virtue of Schur’s lemma, so that 3(SU(n)) = {e*™/"[ : r = 0,...n — 1} ~ 7Z,, while
3(U(n)) ={el:0<a<2r}~U(1).

Note that SO(2) ~ U(1) since a general SO(2) matrix

(cos 6 —sind

sinf@ cosf

>, 0<6<2r, (1.51)

is in one to one correspondence with a general element of U(1),

el 0<f<2rm. (1.52)

Sp(2n,R) and Sp(2n,C), symplectic 2n x 2n real or complex matrices satisfying
MTJM =T, (1.53)

where J is a 2n X 2n antisymmetric matrix with the standard form
J = . . (1.54)

In this case M7 JM is antisymmetric so that (1.53) provides n(2n — 1) conditions and
hence Sp(2n,R) has n(2n + 1) parameters. For symplectic transformations there is an
antisymmetric invariant form (v/,v) = —(v,v’) = v'T Jv.

The condition (1.53) requires det M = 1 so there are no further restrictions as for O(n)
and U(n). To show this we define the Pfaffian' for 2n x 2n antisymmetric matrices A by
1
Pf(A) = — Aiyiy - A

= gy Sitian

(1.55)

12n—1%2n 3

with €;,. 4,, the 2n-dimensional antisymmetric symbol, 1. 2, = 1. The Pfaffian is essentially
the square root of the usual determinant since

det A = Pf(A)?, (1.56)

! Johann Friedrich Pfaff, 1765-1825, German.
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and it is easy to see that
Pf(J) =1. (1.57)

The critical property here is that
Pf(MTAM) = det M Pf(A) since & iy, Mijy - Miy,jo, =det Mej, 4, . (1.58)

Applying (1.58) with A = J to the definition of symplectic matrices in (1.53) shows that
we must have det M = 1.

Since both +1I belong to Sp(2n,R) then the centre 3(Sp(2n,R)) ~ Zs.

The matrix groups SO(n) and SU(n) are compact, which will be defined precisely later
but which for the moment can be taken to mean that the natural parameters vary over a
finite range. Sp(2n,R) is not compact, which is evident since matrices of the form

coshf@ sinh@
sinh @ coshé@

) , —00 < 6 < 0. (1.59)

belong to Sp(2,R).

A compact Sp group, denoted Sp(n) or sometimes USp(2n), can be obtained by consid-
ering matrices belonging to both U(2n) and Sp(2n,C). An alternative characterisation of
Sp(n) is in terms of n X n quaternionic unitary matrices. A basis for quaternionic numbers,
denoted H after Hamilton? and extending C, is provided by the unit imaginary quaternions
i,7j, k, satisfying i = j2 = k> = —1 and ij = k, jk = i, ki = j, together with the real 1. A
general quaternion is a linear combination ¢ = x1 + yi + uj + vk, for z,y,u,v € R, and the
conjugate ¢ = z1 — yi — uj — vk, gq = |q|*1. A n X n quaternionic matrix M has the form

M =al +bi+cj+dk, a,bcd real n X n matrices, (1.60)

and the adjoint is B
M=a"1-b"i—cTj—dk. (1.61)
Sp(n) ~ U(n,H) is defined in terms of n X n quaternion matrices with the property

MM =1,1, (1.62)

for I, the unit n x n matrix. A general quaternionic n x n M then has 4n? parameters
whereas U = MM = U is a hermitian quaternion matrix which has n real diagonal elements
and %n(n — 1) independent off diagonal quaternionic numbers giving n(2n — 1) parameters
altogether. Hence (1.62) provides n(2n — 1) conditions so that Sp(n) has n(2n + 1) param-
eters.

To show the correspondence of U(n,H) with USp(2n) we replace the quaternions by
2 X 2 matrices according to

L= (59), i=(90), = (%0), k=(0%) (1.63)

2William Rowan Hamilton, 1805-65, Irish.
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so that any n X n quaternion matrix M becomes a 2n x 2n complex matrix M,
M—-M, M—-M, 1oL, Lj—J = M =-JM"J. (1.64)

(1.62) then ensures MM = I, so that M € U(2n) and furthermore (1.64) requires also
that M obeys (1.53).

There are also various extensions which also arise frequently in physics. Suppose g is
the diagonal (n +m) x (n + m) matrix defined by

9= (Ig _(}m> , (1.65)

then the pseudo-orthogonal groups O(n,m), and hence SO(n, m), are defined by real ma-
trices M such that
MTgM =g. (1.66)

The invariant form in this case is v'7 gv. Similarly we may define U(n,m) and SU(n,m).
It is easy to see that O(n,m) ~ O(m,n) and similarly for other analogous cases. The
parameter count for these groups is the same as for the corresponding O(n+m) or U(n+m),
SU(n +m). Note that matrices belonging to SO(1,1) are just those given in (1.59).

For each matrix group the definition of course provides a representation which is termed
the fundamental representation.

1.6 Symmetries and Quantum Mechanics

A symmetry of a physical system is defined as a set of transformations acting on the system
such that the physical observables are invariant. In quantum mechanics the state of a
particular physical system is represented by a vector |¢) belonging to a vector (or Hilbert)
space H. The essential observables are then the probabilities, given that the system is
in a state [¢), of finding, under some appropriate measurement, the system in a state
|#). Assuming [1),|¢) are both normalised this probability is |(¢|1)|?. For a symmetry
transformation [1)) — |¢)') we must require

[(@l)]* = [{¢[9)* forall |v),|¢) € H. (1.67)

Any quantum state vector is arbitrary up to a complex phase [¢) ~ e¥|)). Making use of
this potential freedom Wigner® proved that there is an operator U such that

Uly) = [¢'), (1.68)
and either (¢/|¢)') = () with U linear
Ul(arln) + azlipe)) = arUn) + a2U a) (1.69)
or (¢'|¢)) = (d¥)" = (Y|¢) with U anti-linear
Ul(a1]v1) + azlyp2)) = ar"Uln) + as'Ulia) . (1.70)

3Eugene Paul Wigner, 1902-1995, Hungarian until 1937, then American. Nobel Prize 1962.
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Thus U is unitary linear or unitary anti-linear. Mostly the anti-linear case is not relevant,
if U is continuously connected to the identity it must be linear. For the discrete symmetry
linked to time reversalt — —t the associated operator 7" must be anti-linear, in order for the
Schrodinger equation i%]z@ = H|) to be invariant when THT ! = H (we must exclude
the alternative possibility THT ' = —H since energies should be positive or bounded
below).

For a symmetry group G = {g} then we must have unitary operators U[g] where we
require Ule] = 1, U[g™!] = Ulg]~!. Because of the freedom of complex phases we may relax
the product rule and require only

Ulgi|Ulg;] = 799U g;g;] . (1.71)

If the phase factor e?7 is present this gives rise to a projective representation. However the
associativity condition (1.4) ensures y(g;, g;) must satisfy consistency conditions,

Y(9is 959) + (95, 9%) = V(9i95, 9%) + (94, g5) - (1.72)

There are always solutions to (1.72) of the form

Y(9i, 95) = algig;) — algi) — algy), (1.73)

for any arbitrary a(g) depending on g € G. However such solutions are trivial since in this
case we may let e?*9U[g] — Ul[g] to remove the phase factor in (1.71). For most groups
there are no non trivial solutions for v(g;, gj) so the extra freedom allowed by (1.71) may
be neglected so there is no need to consider projective representations, although there are
some cases when it is essential.

If G is a symmetry for a physical system with a Hamiltonian H we must require
Ulg|HU[g] ' = H forall geG. (1.74)

If H has energy levels with degeneracy so that

Hlp) = Eliby), m=1,...,n, (1.75)
then it is easy to see that
HU[g]lyr) = EUg]|¢r) - (1.76)
Hence we must have .
Ulgllvr) = ts) Dar(9) (1.77)
s=1

and furthermore the matrices [Ds,(g)] form a n-dimensional representation of G. If {|¢,)}
are orthonormal, (1, |1)s) = d,s, then the matrices are unitary. The representation need not
be irreducible but, unless there are additional symmetries not taken into account or there is
some accidental special choice for the parameters in H, in realistic physical examples only
irreducible representations are relevant.

14



2 Rotations and Angular Momentum, SO(3) and SU(2)

Symmetry under rotations in three dimensional space is an essential part of general physical
theories which is why they are most naturally expressed in vector notation. The fundamental
property of rotations is that the lengths, and scalar products, of vectors are invariant.

Rotations correspond to orthogonal matrices, since acting on column vectors v, they are
the most general transformations leaving v? v invariant, for real v the length |v| is given by
|v|? = vTv. For any real orthogonal matrix M then if v is an eigenvector, in general complex,
Muv = dv we also have Mv* = A\*v*, so that if X is complex both A\, \* are eigenvalues, and
(Mv*)T Mv = |\?vTv = vfv so that we must have [A\|]? = 1.

2.1 Three Dimensional Rotations

Rotations in three dimensions are then determined by matrices R € O(3) and hence satis-

fying
RTR=1. (2.1)

The eigenvalues of R can only be ¢, e~ and 1 or —1 so that a general R can therefore be
reduced, by a real transformation S, to the form

cosf@ —sinf 0
SRS™!' = |sin® cosf 0 |. (2.2)
0 0 +1

For det R =1, so that R € SO(3), we must have the +1 case when

trR =2cosf + 1. (2.3)

Acting on a spatial vector x the matrix R induces a linear transformation

x — x' = xR, (2.4)

where, for i, j, three dimensional indices, we have
.CC/Z == Rijﬂfj s (25)
For det R = —1 the transformation involves a reflection.

A general R € SO(3) has 3 parameters which may be taken as the rotation angle 6 and
the unit vector n, which is also be specified by two angles, and is determined by Rn = n.
n defines the axis of the rotation. The matrix may then be expressed in general as

R;;j(0,n) = cosf6;; + (1 — cosO)nynj — sin b g;j,ny, (2.6)

where €5, is the three dimensional antisymmetric symbol, €123 = 1. The parameters (6,n)
cover all rotations if

nesS? 0<6<m, (myn) ~ (m,—n), (2.7)
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with S? the two-dimensional unit sphere. For an infinitesimal rotation R(66,n) acting on a
vector x and using standard vector notation we then have

x x' =x+60n xx. (2.8)

R(60,n)
It is easy to see that x'? = x? + O(56?).

For a vector product (n x x)® = nft x xf* so that making use of (2.8)

x ——— x' =x+60nf x x, (2.9)
RR(30,n)R—!
so that we must have
RR(66,n)R™' = R(66, Rn) . (2.10)

Furthermore we must then have RR(6,n)R™! = R(0, Rn), so that all rotations with the
same 0 belong to a single conjugacy class.

2.2 Isomorphism of SO(3) and SU(2)/Z,

SO(3) ~ SU(2)/Za, where Zs is the centre of SU(2) which is formed by the 2 x 2 matrices
I,—1, is of crucial importance in understanding the role of spinors under rotations. To
demonstrate this we introduce the standard Pauli* matrices, a set of three 2 x 2 matrices
which have the explicit form

o] = G é) . o= <? _0’> . o3= <(1) _01> : (2.11)

These matrices satisfy the algebraic relations
0;0j = 05 I + i €530, (2.12)

and also are traceless and hermitian. Adopting a vector notation o = (01, 02,03), so that
(2.12) is equivalent toa-ocb-oc=a-bl+iaxb- o, we have

ol =0, tr(o) =0. (2.13)

Using (2.12) then gives
tr(oio;) = 205 , (2.14)
which ensures that any 2 x 2 matrix A can be expressed in the form
A=1Ltr(A) I+ itr(cA) o, (2.15)
since the Pauli matrices form a complete set of traceless and hermitian 2 x 2 matrices.

The Pauli matrices ensure that there is a one to one correspondence between real three
vectors and hermitian traceless 2 x 2 matrices, given explicitly by

x—x-0=(x-0), x = 3tr(cx- o), (2.16)

4Wolfgang Ernst Pauli, 1900-58, Austrian. Nobel prize 1945.
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Furthermore x - o satisfies the matrix equation
(x-0)?=x1I. (2.17)
From (2.17) and (2.13) the eigenvalues of x - & must be £vx? and in consequence we have

det(x- o) = —x>. (2.18)

For any A € SU(2) we can then define a linear transformation x — x’ by
x'.o=Ax oA, (2.19)

since we may straightforwardly verify that Ax - o A' is hermitian and is also traceless, using
the invariance of any trace of products of matrices under cyclic permutations and

AAT =T. (2.20)
With, x” defined by (2.19) and using (2.18),
x'? = —det(x' - 0) = —det(Ax - 0 AT) = —det(x - o) = X2, (2.21)

using det(XY) = det X detY and from (2.20) det A det AT = 1. Hence, since this shows
that |x/| = |x],

CC/Z = Rijxj : (2'22)
with [R;;] an orthogonal matrix. Furthermore since as A — I, R;; — d;; we must have
det[R;;] = 1. Explicitly from (2.19) and (2.14)

O'iRl'j = AUJ'AT = Rij = %tr(aiAJjAT) . (2.23)

To show the converse then from (2.23), using (note o,0,0; = —0;) oA, = 2tr(AN)I — AT,
we obtain

Rjj = |tr(A)]* -1, o Rijoj = 2tr(ANA—T. (2.24)

For A € SU(2), tr(A) = tr(AT) is real (the eigenvalues of A are e**® giving tr(A) = 2 cos a)
so that (2.24) may be solved for tr(A) and then A,

4 I+ UiRijUj

A= 7, (2.25)
2(1 + Rjj)2
The arbitrary sign, which cancels in (2.23), ensures that in general A4 < R;;.
For a rotation through an infinitesimal angle as in (2.8) then from (2.6)
Rij = 6;5 — 60 eimy, (2.26)
and it is easy to obtain, assuming A — I as d6 — 0,
A=I-360in-o. (2.27)

Note that since det(I4+X) = 14+trX, to first order in X, for any matrix then the tracelessness
of the Pauli matrices is necessary for (2.27) to be compatible with det A = 1. For a finite
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rotation angle 6 then, with (2.3), (2.24) gives [tr(A)| = 2| cos 20| and the matrix A can be
found by exponentiation, where corresponding to (2.6),

A(f,n) = e 210RC — cog 101 —sinifin-o. (2.28)
The parameters (6,n) cover all SU(2) matrices for
nesS?,  0<6<2m, (2.29)

in contrast to (2.7).

2.3 Infinitesimal Rotations and Generators

To analyse the possible representation spaces for the rotation group it is sufficient to consider
rotations which are close to the identity as in (2.8). If consider two infinitesimal rotations
Ry = R(001,n1) and Ry = R(062,n2) then it is easy to see that

R=Ry 'R 'RyR; =T+ O(66,06,) . (2.30)
Acting on a vector x and using (2.8) and keeping only terms which are O(601662) we find
X x = X+591502(n2 X (n1 X x) —n; X (ng X x))
=x+ 0601002 (n2 X n1) X x, (2.31)
using standard vector product identities.

Acting on a quantum mechanical vector space the corresponding unitary operators are
assumed to be of the form
U[R(60,n)] =1—1i60n-J, (2.32)

J are the generators of the rotation group. Since U[R(60,n)]" = 1+i60n-J + O(66?) the
condition for U to be a unitary operator becomes

Ji=17, (2.33)

or each J; is hermitian. If we consider the combined rotations as in (2.30) in conjunction
with (2.31) and (2.32) we find

U[R] =1- i(591(592 (n2 X n1) -J
= U[Ry] 'U[Ry]'U|[R2]U|R,]
=1- 501502 [112 -J , 17 - J] s (2.34)

where it is only necessary to keep O(d6,1862) contributions as before. Hence we must have
[HQ-J,H1~J]:i(n2Xn1)~J, (235)

or equivalently
[Ji, Jj] = Z'Eijkjk . (2.36)
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Although (2.32) expresses U in terms of J for infinitesimal rotations it can be extended
to finite rotations since

N—oo

N
U[R(#,n)] = exp(—ifn-J) = lim <1 —1 % n- J) . (2.37)

Under rotations J is a vector since, from (2.10), U[R]JU[R(60,n)]U[R]~! = U[R(50, Rn)]
which in turn from (2.32) implies

URILU[R™ = (R ;. (2.38)

For a physical system the vector operator, rotation group generator, J is identified as
that corresponding to the total angular momentum of the system and then (2.36) are the
fundamental angular momentum commutation relations. It is important to recognise that
rotational invariance of the Hamiltonian is equivalent to conservation of angular momentum
since

URIHUIR ' = H & [J,H] =0. (2.39)

This ensures that the degenerate states for each energy must belong to a representation
space for a representation of the rotation group.

2.4 Representations of Angular Momentum Commutation Relations

We here describe how the commutation relations (2.36) can be directly analysed to deter-
mine possible representation spaces V on which the action of the operators J is determined.
First we define

Jo=Ji+ids, (2.40)

and then (2.36) is equivalent to
[J3, Je] = £ ]+, (2.41a)
[Ty, J_] = 2J5. (2.41b)

The hermeticity conditions (2.33) then become

Ji=J_, Jt=J;. (2.42)

A basis for a space on which a representation for the angular momentum commutation
relations is defined in terms of eigenvectors of J3. Let

J3|m) = m|m) . (2.43)
Then from (2.41a) it is easy to see that
Jylm) o< m+£1) or 0, (2.44)

so that the possible J3 eigenvalues form a sequence ..., m —1,m,m+1....
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If the states |m £ 1) are non zero we define
Jlm)=lm =1y, Jelm) = Anlm+1). (2.45)

and hence
JiJ_|m) = Ap—1lm) , J_Jym) = Ap|m) . (2.46)

By considering [J, J_]|m) we have from (2.41b), if [m £ 1) are non zero,
An—1 — Am = 2m.. (2.47)
This can be solved for any m by
Am =JG+1) —=m(m+1), (2.48)

for some constant written as j(j+1). For sufficiently large positive or negative m we clearly
have A\, < 0. The hermeticity conditions (2.42) require that J;.J_ and J_J; are of the
form OTO and so must have positive eigenvalues with zero possible only if J_ or respectively
J annihilates the state ((|OTO|¢) > 0, if 0 then O|) = 0). Hence there must be both a

maximum Mmpax and a minimum My, for m requiring

J+‘mmax> = O = )\mmax = (j - mmax)(j + Mmax + 1) = 07 (2493‘)
J_\mmin> =0 = )\mmin_l = (_] + mmin)(j — Mumin + 1) =0, (2.49b)

where also
Mmax — Mmin = 0,1,2,... . (2.50)

Taking j > 0 the result (2.48) then requires
Muax =5, Magin = —J - (2.51)
For this to be possible we must have
i€{0,3,1,3,...}, (2.52)
and then for each value of j
me{—j,—ji+1,...5—1,j}. (2.53)
The corresponding states |m) form a basis for a (25 + 1)-dimensional representation space

V;.

2.5 The |jm) basis

It is more convenient to define an orthonormal basis for V; in terms of states {|jm)}, with
j,m as in (2.52) and (2.53), satisfying

(Gmlim’) = dmm - (2.54)
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These are eigenvectors of J3 as before
J3|jm) = mljm). (2.55)
and j may be defined as the maximum value of m so that
J4lj ) =0. (2.56)

A state satisfying both (2.55) and (2.56) is called a highest weight state. In this case the
action of Ji gives
Jelim) = NE [jmet1), (2.57)

+ . .. .
where N, are determined by requiring (2.54) to be satisfied. From (2.46) and (2.48) we
must then have

ING=An =G =m)G+m+1), NP = =G +m)(—m+1). (2.58)

By convention N ]im are chosen to real and positive so that

N =VGEFm(G+Em+1). (2.59)

In general we may then define the the states {|jm)} in terms of the highest weight state by

1
()3d) = (25 ) g — by n=01,...,2). (2.60)

An alternative prescription for specifying the states |jm) is to consider the operator
J2 = 12 + Jo2 + J32. In terms of J4, J3 this can be expressed in two alternative forms

(2.61)

j2_ J_Ji+JE+ J3,
JirJ_ + J32 —J3.

With the first form in (2.61) and using (2.56) we then get acting on the highest weight state
I3 3) =G+ D). (2.62)

Moreover J? is a rotational scalar and satisfies
3%, ;] =0, i=1,2,3. (2.63)

In particular J_ commutes with J2 so that the eigenvalue is the same for all m. Hence the
states |jm) satisfy
I2jm) =j( +Dljm), (2.64)

as well as (2.55). Nevertheless we require (2.57), with (2.59), to determine the relative
phases of all states.
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2.5.1 Representation Matrices

Using the |jm) basis it is straightforward to define corresponding representation matrices
for each j belonging to (2.52). For the angular momentum operator

ID i = (m’ |3 m) (2.65)
or alternatively

Jjm)y =Y 1im) I . (2.66)

The (25 + 1) x (2j 4+ 1) matrices JU) = [JU),.,.] then satisfy the angular momentum
commutation relations (2.36). From (2.55) and (2.57)

I wm =m0y I o = VGF MG EM D) dprir . (2.67)

For R a rotation then
D(J')

m/'m

(R) = (i m'|U[R]|j m), (2.68)

defines (2j + 1) x (27 + 1) matrices DY) (R) = [D(j 2m (R)] forming a representation of the

m
the rotation group corresponding to the representation space V;,

UR]|jm) = |jm/)DY) (R). (2.69)

Note that D) (R) = 1 is the trivial representation and for an infinitesimal rotation as in
(2.8) 4 ‘
DY (R(80,n)) = Inj41 —i60n-J9) . (2.70)

To obtain explicit forms for the rotation matrices it is convenient to parameterise a
rotation in terms of Euler angles 1, 6, ¢ when

R = R(¢7 63)R(07 62)R(¢, 63) y (271)
for es, es corresponding to unit vectors along the 2,3 directions Then
U[R] = ™' e 002 ¢~ (2.72)

so that in (2.68)

Dyt (B) = €O (), dg (0) = Gdlem R jm) . (2.73)
For the special cases of 8 = 7, 27,
A () = (1) G i) (27) = (=) ¥ b (2.74)

In general DU)(R(27,n)) = (—1)%Iy;,1, which for j a S-integer is not the identity. For
representations of SO(3) it would be necessary to take j to be an integer but in quantum
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mechanics any j given by (2.52) is allowed since we require representations only up to a
phase factor. From the result for & = m we have

e im) = (=1)7™|j —m) . (2.75)

Using this and e~™/3|jm) = e=¥|jm) with e=¥™/3 J5e"™3 = — J, we must have from the
definition in (2.73)

d2),(0) = (=™ mdY),(0) = (1)), (<0) = (=) (6). (2.76)

—m/ —m m'm mm

For the simplest case j = %, it is easy to see from (2.67) that

(3) (01 () _ (00 () 1 /1 0
= (0 0/ =11 0) T3t = 2\0 -1/ (2.77)

and hence we have )
Je) =1lg, (2.78)

where 0;, i = 1,2, 3 are the Pauli matrices as given in (2.11). It is clear that %O‘i must satisfy
the commutation relations (2.36). The required commutation relations are a consequence
of (2.12). For j = § we also have

d(%)w) _ (cos %0 —sin ;0) . (2.79)

.1 1
sin 59 cos 50

With the definition of characters in (1.40) the rotation group characters
x;j(0) = tr (DY (R(6,7))) , (2.80)

depend only on the rotation angle . Hence they may be easily calculated by considering

J J sl 1
i85 _imo _ SIn(j +3)0
(0= Y Gl Ejmy = 37 e = =i (258

2.6 Tensor Products and Angular Momentum Addition

The representation space V;, which has the orthonormal basis {|jm)}, determines an irre-
ducible representation of SU(2) and also the commutation relations (2.36) of the generators
or physically the angular momentum operators. The tensor product V;, ® V;, of two repre-
sentation spaces Vj,,V;, has a basis

1 ma)1lj2ma)2 . (2.82)

Associated with V;,, V), there are two independent angular operators J1,Jo both satisfying
the commutation relations (2.36)

[J1is J1] = deijrdie
[J2,i 5 J2,5] = 1€ijiJo - (2.83)
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They may be extended to act on V;, ® V), since with the basis (2.82)

J1=J1®1, J1(Jjima)1 |jama)2) = Ji|jima)i [jama)2,
Jo=11®Js, Jo(ljima)i jama)2) = |jima)1 Ja|jama)a . (2.84)

With this definition it is clear that they commute
[J1i, J2;] =0. (2.85)

The generator for the tensor product representation, or the total angular momentum oper-
ator, is then defined by

It is easy to see that this has the standard commutation relations (2.36).

In the space V;; ® V;, we may construct states which are standard basis states for the
total angular momentum |JM) labelled by the eigenvalues of J2, J3,
J3|JM) = M|JM),
J2IM) = J(J +1)|JM). (2.87)

These states are chosen to be orthonormal so that
<J/M/|JM> :6J’J5M’M7 (288)

and satisfy (2.57). All states in V;; ® Vj, must be linear combinations of the basis states
(2.82) so that we may write

[TM) = > |jima)iljama)a (jima jomal JM) . (2.89)

mi,m2

Here
(Jima jame| JM) , (2.90)

are Clebsch-Gordan coefficients®.

As J3 = Ji 3 + Jo3 Clebsch-Gordan coefficients must vanish unless M = m1 + mao. To
determine the possible values of J it is sufficient to find all highest weight states |JJ) in
Vj, ®Vj, such that

J3|JJy = J|JJ), Ji|JJ)y=0. (2.91)

We may then determine the states |JM) by applying J_ as in (2.60). There is clearly a
unique highest weight state with J = j; + jo given by

l71+72 J1+72) = |j1d1)1 |72 42)2, (2.92)

from which [ji+j2 M) is obtained as in (2.60). We may then construct the states |JM) for
J = j1+ jo,j1 + j2 — 1,... iteratively. Defining VM) ¢ Vj, ® Vj, to be the subspace for
which J3 has eigenvalue M then, since it has a basis as in (2.82) for all m; + mg = M, we
have, assuming j; > ja, dim VM) = j; 4+ jo — M +1 for M > j; — j» and dim VM) = 25, +1

®Rudolf Friedrich Alfred Clebsch, 1833-1872, German. Paul Albert Gordan, 1837-1912, German.
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for M < j; — jo. Assume all states |J'M) have been found as in (2.89) for j; + jo > J' > J.
For j1 4+ jo > J > j1 — jo there is a one dimensional subspace in V) which is orthogonal to
all states |J'J) for J < J' < j1 + jo. This subspace must be annihilated by J, as otherwise
there would be too many states with M = J + 1, and hence there is a highest weight state
|JJ). If M < j; — jo it is no longer possible to construct further highest weight states.
Hence we have shown, since the results must be symmetric in ji, j2, that in V;, ® V;, there
exists exactly one vector subspace V;, of dimension (2.J + 1), for each J-value in the range

Je{p+inn+i—1.. 0 —gl+1Ln -0l (2.93)
or
Ji+7J2
Vi, @V}, = @ Vy. (2.94)
J=|j1—72|

If j1 > jo we can easily check that

Jitj2 Ji+je
Yo i+n= > ((J+1)?-T%)
J=j1—J2 J=j1—72
= +i+1)%=(G1—52)? = (21 + 1)(2j2 + 1), (2.95)

so that the basis {|JM)} has the correct dimension to span the vector space Vj, ® Vj,.

Alternatively in terms of the characters given in (2.81)

J2 a2
—im, 1 ol PR
X1 (0) X2 (8) = x5, (0) Z e~ tmd — —_— Z (e(h-l- +3)0 _ (=it +2)9)
— 2i sin 56 .
m==J2 m=—j2
Jit+je 1472
= D x0O= Y x00, (2.96)
J=—j2 J=lj1—72|

where if jo > ji we use x—;(0) = —x;j—1(0) to show all contributions to the sum for j < jo—j;
cancel. Comparing with (1.47) the result of this character calculation of course matches the
tensor product decomposition given in (2.95).

The construction of |JM) states described above allows the Clebsch-Gordan coefficients
to be iteratively determined starting from J = j; 4+ jo and then progressively for lower J
as in (2.93). By convention they are chosen to be real and for each J there is a standard
choice of the overall sign. With standard conventions

(jima joma| JM) = (=1)7"277 (jamsy jima | JM) . (2.97)

Since the original basis (2.82) and {|JM)} are both orthonormal we have the orthogo-
nality /completeness conditions

> {ima jamal JM)(jima jama| J' M"Y = 615 Sarar

mi,ma2

Z<j1m1 ]2m2|JM> <]1m,1 ]2m/2|‘]M> = 6m1m’1 5m2m’2 . (298)
JM
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For the tensor product representation defined on the tensor product space Vj ® Vj,
we may use the Clebsch-Gordan coefficients as in (2.89) to give the decomposition into
irreducible representations for each J allowed by (2.93)

Z Z Dm1 m1 gz')mQ (R) <j1m1/ j2m2/|JlM,> <j1m1 j27’fL2’JM> = 5J’J DE\;[]2M(R) .
m1,m1 mg ,mo

(2.99)

2.7 Examples of the calculation of Clebsch-Gordan coefficients

In the case in which j; = 1 and j = %, there are in V; ® V1 six basis states |1 my) \% ma).
2

mi 1 1 0 0o -1 -1

1 1 1 1 1 1

e i 1 1 1 i3
M=mi+my 3 3 2 T3 T3 T3

In the basis |JM) for the total angular momentum there are also six states |3 M) and |3 M).
Since there is only one state with M = %, it follows that we may identify

2 =101Y. (2100

Now action of the lowering operator J_ = Ji_ + Jo_, allows all the states \% M) to be given
as linear combinations of product states |1 mq) |% mg). Applying J_ = J;_ + Jo— to (2.100)
gives

T3 =D L5+ 1) S i by, (2.101)

or

V3133 =V2110) 13 5) + 1) [5-3). (2.102)

=20 b+ ii-5). (2.103)

This result then gives explicit numerical values for two Clebsch-Gordan coefficients. Re-
peating this process twice gives similar expressions for the states |f —7> and \5 —7> The
last step provides a check: to within a sign at least one should find that

giving

53 =11-1I3 —%>, (2.104)
because there is only one possible state with M = —2 in V; ® V1

Turning next to the J = multlplet we use the fact that the state |f 7> is orthogonal
to the state |3 1) constructed above. It follows that from (2.103) that we may write

13 =—\/310) 134+ /2R 12 -1). (2.105)

This result is uniquely determined to within an overall phase which we have taken in ac-
cordance with the so-called Condon and Shortley phase convention, i.e. we have chosen

3y, (2.106)



to be real and positive, in fact here equal to —{—\/g To summarise we have shown that

the total angular momentum basis states |jm) are given in terms of the product states
|mq) |$ma) by

33) =11 153)
30 =V3noh+inni-p
3-D=Vin-DEH+inon-3
$-H=1-11-b), (2:107)
and
5= Vim0 +yEnni-y
3-b=—En-nih+ino -y, (2.108

All the Clebsch-Gordan coefficients
<1m1 %mQ‘JM> s (2.109)

can then be read off from (2.107) and (2.108).

2.7.1 Construction of Singlet States

A special example of decomposition of tensor products is the construction of the singlet
states |00), which corresponds to the one-dimensional trivial representation and so is in-
variant under rotations. For V; ® Vj,, as is clear from (2.93) this is only possible for
j1 = jo = j and the singlet state must have the general form

100) = " am | m)1lj —m)s. (2.110)

Requiring J;|00) = 0 gives a,, = —a;,—1 so that, imposing the normalisation condition,

1 & . .
|00) = \/mnz%(—l)”bj—nh\j —j+n)2. (2.111)

This determines the Clebsch-Gordan coefficients (jm j—m|00). Note that |00) is symmetric,
antisymmetric under 1 < 2 according to whether 2j is even, odd.

If we consider the extension to three spins for the tensor product space V;, ® V;, ® Vjs,
then we may couple |j1 m1)1|j2m2)2 to form a vector with J = j3 and then use (2.111).
The result may be expressed as

_ Ji J2 J3 ‘ . .
|00) = E <m1 o m3> |71 m1)1]72 m2)2ljs ma)s, (2.112)
mi,m2,ms3
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where,

<j1 2 j3>:(—Uj1j2ms (2.113)

1M1 J2ma|jz —ma3) .
m1 M ms3 % 1 1 (Jima jamaljs 3)
(2.113) defines the 3j-symbols which are more symmetric than Clebsch-Gordan coefficients,
under the interchange any pair of the j,m’s the 3j-symbol is invariant save for an overall
factor (—1)71172%73, They are non zero only if m; + mo + mg = 0 and ji, jo, j3 satisfy
triangular inequalities |71 — j2| < j3 < j1 + Jjo.

2.8 SO(3) Tensors

In the standard treatment of rotations vectors and tensors play an essential role. For
R = [R;;] and SO(3) rotation then a vector is required to transform as

Vi Vi =R;V;. (2.114)

Vectors then give a three dimensional representation space V. A rank n tensor Tj,. 4, is
then defined as belonging to the n-fold tensor product V ® --- ® V and hence satisfy the
transformation rule

Ty i, = Tiyin = Rivjy - Rivin Tir i - (2.115)

It is easy to see the dimension of the representation space, V(®V)" !, formed by rank n
tensors, is 3". For n = 0 we have a scalar which is invariant and n = 1 corresponds to
a vector. The crucial property of rotational tensors is that they be multiplied to form
tensors of higher rank, for two vectors U;, V; then U;V; is a rank two tensor, and also that
contraction of indices preserves tensorial properties essential because for any two vectors
U,V is a scalar and invariant under rotations, U;V’; = U;V;. The rank n tensor vector space
then has an invariant scalar product 7" - .S formed by contracting all indices on any pair of
rank n tensors T3, 4., Siy. i

In tensorial analysis invariant tensors, satisfying I, ;. = I;,. i, , are of critical impor-

tance. For rotations we have the Kronecker delta d;;
5’ij = Ry Rji, = dij , (2.116)
as a consequence of the orthogonality property (2.1), and also the e-symbol
ik = RijRjmRin €tmn = det R g5 = €k » (2.117)

if R € SO(3). Any higher rank invariant tensor is formed in terms of Kronecker deltas and
e-symbols, for rank 2n we may use n Kronecker deltas and for rank 2n + 3, n Kronecker
deltas and one e-symbol, since two e-symbols can always be reduced to combinations of
Kronecker deltas.

Using 6;; and €;;; we may reduce tensors to ones of lower rank. Thus for a rank two
tensor T;;, T;; = 0;;T;5, which corresponds to the trace of the associated matrix, is rank
zero and thus a scalar, and V; = %&'jijk is a vector. Hence the 9 dimensional space formed
by rank two tensors contains invariant, under rotations, subspaces of dimension one and
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dimension three formed by these scalars and vectors. In consequence rank 2 tensors do not
form an irreducible representation space for rotations.

To demonstrate the decomposition of rank 2 tensors into irreducible components we
write it as a sum of symmetric and antisymmetric tensors and re-express the latter as a
vector. Separating out the trace of the symmetric tensor then gives

Tyj = Sij + eijiVi + 5055 T (2.118)

for

Sz‘j = T(ij) — %(51] Tkka Vz = %Eijijk . (2.119)
Each term in (2.118) transforms independently under rotations, so that for T;; — T,
Sij — S, Vi = Vi, T — T = Trr. The tensors S;; are symmetric and traceless,

S = 0, and it is easy to see that they span a space of dimension 5.

These considerations may be generalised to higher rank but it is necessary to identify
for each n those conditions on rank n tensors that ensure they form an irreducible space. If
Si, .4, is to be irreducible under rotations then all lower rank tensors formed using invariant
tensors must vanish. Hence we require

5“1'551'1_“2'” = 0, EjirisSh...in = 0, for all r,Ss, 1<r<s<n. (2.120)
These conditions on the tensor S are easy to solve, it is necessary only that it is symmetric

Siyoin =5 (2.121)

11.in)

and also traceless on any pair of indices. With the symmetry condition (2.121) it is sufficient
to require just
Siyin_2jj = 0. (2.122)

Such tensors then span a space V,, which is irreducible.
To count the dimension of V,, we first consider only symmetric tensors satisfying (2.121),
belonging to the symmetrised n-fold tensor product, sym(V ® --- ® V). Because of the

symmetry not all tensors are independent of course, any tensor with r indices 1, s indices
2 and t indices 3 will be equal to

S1.1 2.2 3.3 where r;s5,t>0, r+s+t=n. (2.123)
Independent rank n symmetric tensors may then be counted by counting all r, s, ¢t satisfying

the conditions in (2.123), hence this gives

dim (sym(V® ---®V)) = 1(n+1)(n+2). (2.124)

n

To take the traceless conditions (2.122) into account it is sufficient, since taking the trace of
rank n symmetric tensors gives rank n — 2 symmetric tensors spanning a space of dimension

2(n — 1)n, to subtract the dimension for rank n — 2 symmetric tensors giving

dimV, = 3(n+1)(n+2) —i(n—1)n=2n+1. (2.125)
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Thus this irreducible space V,, may be identified with the representation space j = n, with
n an integer.

For rank n symmetric traceless tensors an orthonormal basis Sz(zn)zn, labelled by m

taking 2n + 1 values, satisfies S . §(m") = §mm' Quch a basis may be used to define a
corresponding set of spherical harmonics, depending on a unit vector X, by

Yo (%) = S, &0 2, (2.126)

01...8

With two symmetric traceless tensors Si,..4, and Sa;, ., then their product can be
decomposed into symmetric traceless tensors by using the invariant tensors d;;, ;j%, gener-
alising (2.118) and (2.119). Assuming n > m, and using only one e-symbol since two may
be reduced to Kronecker deltas, we may construct the following symmetric tensors

S (i1 eviinr 1o O2in it eoiinim—20) 1o 2 r=0,...m,
Ejk(in Sliinr j1odr § O2in_ritoinim_1-20)jrgrk> T =0,...m—1. (2.127)

For each symmetric tensor there is a corresponding one which is traceless obtained by
subtracting appropriate combinations of lower order tensors in conjunction with Kronecker
deltas, as in (2.119) for the simplest case of rank two. Hence the product of the two
symmetric tensors of rank n,m decomposes into irreducible tensors of rank n + m — r,
r=20,1,...,m, in accord with general angular momentum product rules.

In quantum mechanics we may extend the notion of a tensor to operators acting on the
quantum mechanical vector space. For a vector operator we require

URIV;UIR) ™' = (R ) V5, (2.128)
as in (2.38), while for a rank n tensor operator
U[R|T;, .., UR ™ = (R Yirjy - (B inju Ty (2.129)

These may be decomposed into irreducible tensor operators as above. For infinitesimal
rotations as in (2.8), with U[R] correspondingly given by (2.32), then (2.128) gives

[Ji, Vi) = iciju Vi, (2.130)

which is an alternative definition of a vector operator. From (2.129) we similarly get
i, Tjrja..jn] = 1 €1k Thjorjn 4 €ijok Tjikejn T+ 1050k Tjrjo. ki - (2.131)
The operators x, p are examples of vector operators for the angular momentum operator

given by L = x X p.

2.8.1 Spherical Harmonics

Rank n symmetric traceless tensors are directly related to spherical harmonics. If we choose

an orthonormal basis for such tensors Sz(in)

;,» labelled by m taking 2n + 1 values and
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satisfying S("™). 8 (m) — 5mm,, then the basis may be used to define a corresponding complete
set of orthogonal spherical harmonics on the unit sphere, depending on a unit vector X € 52,
by
Yo (%) = S, & 2, (2.132)
To discuss the scalar product for such harmonics we consider the three dimensional
integrals

|
/dgw e X Hhx — 15 ik o /dga: e’ (k-x)?" = e (2n): (k?)". (2.133)

&))", Be=2.3...C+n-1). (2.134)

If now k = t + t with t2 = t2 = 0 then

/ dQ (t-%)" (- %)" = 4 (t-t)". (2.135)
SZ

2"(3)n

Since t? = 0 then t;, ...t;, defines a symmetric traceless tensor so that (t - X)" represents
a spherical harmonic. Applying the integral (2.135) then gives

n! /

/S AR Yo (%) Yo (%) = 4 T 67 (2.136)
2

2(5)n

2.9 Irreducible Tensor Operators

An alternative basis for irreducible tensor operators is achieved by requiring them to trans-
form similarly to the angular momentum states |j m). An irreducible tensor operator in the
standard angular momentum basis satisfies

Definition: The set of (2k + 1) operators {T},} for

ke{0,5,1,3,...}, (2.137)

and
ge{-k,—k+1,....k—1,k}, (2.138)

for each k in (2.137), constitute a tensor operator of rank k if they satisfy the commutation
relations

(3, Thgl = qThq,
[Jt, Thyl = N;if, Thg+1 (2.139)

with NV kiq given by (2.59). This definition is of course modelled exactly on that for the |jm)

states in (2.55) and (2.57) and ensures that we may treat it, from the point of view of its
angular moment properties, just like a state |k q).
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Examples:
If k=0 then ¢ = 0 and hence [J, Tyo] = 0, i.e. Tyo is just a scalar operator.
If £ =1 then setting

Vi = :F\/g(% +iVa),  Vio= Vs, (2.140)
ensures that Vi, satisfy (2.139) for k = 1 as a consequence of (2.130).

If £ = 2 we may form an irreducible tensor operator 75, from two vectors V;, U; using
Clebsch-Gordan coefficients

Tog =Y VimUp (Im1m’|2q), (2.141)

m,m/’

with Vi, Uryy defined as in (2.140). This gives

Tho = V11U, 1To = \/g(VHUlO + V10U11) ’
Tho = \/%(VHUl_l + 2VioUro + Vi—1Un1) ,
T 1 = \/g(‘/IOUl—l + ‘/1_1U10) s Ty o =V11U1_1. (2142)

The individual T3, may all be expressed in terms of components of the symmetric traceless
tensor S;; = V;Ujy — %&j Vi.Up..

For irreducible tensor operators T}, their matrix elements with respect to states |, j m),
where « are any extra labels necessary to specify the states in addition to jm, are constrained
by the theorem:

Wigner-Eckart Theorem.
(o, j" m/|Tigl v, jm) = (jmkq|j'm) C, (2.143)
with (jm kq|j’ m') a Clebsch-Gordan coefficient. The crucial features of this result are:

(i) The dependence of the matrix element on m,q and m’ is contained in the Clebsch-
Gordan coefficient, and so is known completely. This ensures that the matrix element is
non zero only if j' e {j +k,j+k—1,...,|j —k|+1,[j — k|}.

(i1) The coefficient C' depends only on j,j’,k and on the particular operator and states
involved. It may be written as
C = (&j'||Txlej) . (2.144)

and is referred to as a reduced matrix element.

The case k = ¢ = 0 is an important special case. If [J, Too] = 0, then Ty is scalar
operator and we we have

(o, 7" m/|Toola, jm) = (jm00|j'm’) (/§||To||ecs)
= 8j5 Smm (@'5'[| Tollexg) , (2.145)
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with reduced matrix-element independent of m.

To prove the Wigner-Eckart theorem we first note that Tj4|a, j m) transforms under the
action of the angular momentum operator J just like the product state |k q)1|j m)2 under
the combined J; + Jo. Hence

> Tuglar, jm)(kq jm|JM) = |J M) (2.146)

q,m

defines a set of states {|J M)} satisfying, by virtue of the definition of Clebsch-Gordan
coefficients in (2.89),

Js|J M)y =M|JM),  Je|lJM)= Ny |J M+1). (2.147)
Although the states |J M) are not normalised, it follows then that
(o, 'm'|J M) = Cyéjrsdmnr (2.148)
defines a constant C'; which is independent of m’, M. To verify this we note
(o, JM|JM)N Sy, 4 =/, JM|J|J M—1)
= (a/, IM|JNJ M~1) = (o/, IM~1|J M—=1)N7,, . (2.149)

Since N, ; = N7, we then have (o, JM|J M) = (o/, JM—1|J M—1) so that, for m’ =
M, (2.148) is independent of M. Inverting (2.146)

Thgla, jm) = |J M){kqjm|TM), (2.150)
JM

and then taking the matrix element with (a/, j'm’| gives the Wigner-Eckart theorem, using
(2.148), with Cy = (/|| Tx||evj).

2.10 Spinors

For the rotation groups there are spinorial representations as well as those which can be
described in terms of tensors, which are essentially all those which can be formed from
multiple tensor products of vectors. For SO(3), spinorial representations involve j being
half integral and are obtained from the fundamental representation for SU(2).

For the moment we generalise to A = [A,”] € SU(r), satisfying (2.20), and consider a
vector 7 belonging to the r-dimensional representation space for the fundamental represen-
tation and transforming as

Mo — Ny = Aaﬂnﬁ. (2.151)
The extension to a tensor with n indices is straightforward
Tor.on = Toron =A™ - Aa, Ty g, (2.152)
Since A is unitary
(A = (A*I),ga . (2.153)



The complex conjugation of (2.151) defines a transformation corresponding to the conjugate
representation. If we define

7 = (1a)", (2.154)

then using (2.153) allows the conjugate transformation rule to be written as
7" i =0’ (AT" (2.155)

It is clear then that 7%n, is a scalar. A general tensor may have both upper and lower
indices, of course each upper index transforms as (2.151), each lower one as (2.155).

As with the previous discussion of tensors it is critical to identify the invariant tensors.
For the case when A € SU(2) and o, = 1,2 we have the two-dimensional e-symbols,
e = —gh 12 = 1 and €a = —Epa, Where it is convenient to take €12 = —1. To verify
€qp is invariant under the transformation corresponding to A we use

Eap = AQVA[;‘S&W; =det Aeag =ceqp for AecSU(2), (2.156)

and similarly for e*?. The Kronecker delta also forms an invariant tensor if there is one
lower and one upper index since,

0 = A,78,0(A7N5% = 6,7 (2.157)
For this two-dimensional case, with the preceding conventions, we have the relations

cap €10 = —0.705° + 029057,  earne’? =6,". (2.158)

Rank n tensors as in (2.152) here span a vector space of dimension 2". To obtain
an irreducible vector space under SU(2) transformations we require that contractions with
invariant tensors of lower rank give zero. For Sy, . a, it is sufficient to impose e*"**Sy,. o, =
0 for all » < s. The invariant tensors must then be totally symmetric Sy, .4, = S(Oq._.an).
To count these we may restrict to those of the form

S1.1 2.2 where r=0,...,n, r+s=n. (2.159)
==

T s

Hence there are n + 1 independent symmetric tensors Sy, . ., so that the representation
corresponds to j = %n

The SU(2) vectors 7, and also 7% form SO(3) spinors. For this case the two index
invariant tensors €*? and €qp may be used to raise and lower indices. Hence we may define

n® =e*Ppg, (2.160)
which transforms as in (2.155) and correspondingly

Mo = Eap il (2.161)

As a consequence of (2.158) raising and then lowering an index leaves the spinors 7, un-
changed, and similarly for 7% In general the freedom to lower indices ensures that only
SU(2) tensors with lower indices, as in (2.152), need be considered.
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For an infinitesimal SU(2) transformation, with A as in (2.27), the corresponding change
in a spinor arising from the transformation (2.151) is

e = —i60 3(n - ) ng. (2.162)

For a tensor then correspondingly from (2.152)

n
6T0¢1---O¢n = _259 Z %(n ' U)a'r'ﬁTC‘fl-~~arflﬁar+1~~-an ’ (2163)
r=1

where there is a sum over contributions for each separate index.

Making use of (2.158) we have
£Meps 0’ = o5%, (2.164)
since tr(o) = 0. From (2.164) we get
e (2.165)

showing that (co)®? form a set of three symmetric 2 x 2 matrices. Similar considerations
also apply to (o€)a3. The completeness relations for Pauli matrices can be expressed as

(0€)ap - (€0)° =527 05° 4+ 04° 57, (e0) - (e0)V? = =¥V P — 0BT - (2.166)

The Pauli matrices allow symmetric spinorial tensors to be related to equivalent irre-
ducible vectorial tensors. Thus we may define, for an even number of spinor indices, the
tensor

Tiy.in = (£03,)*P L (053,)*""" S anfhr.Bn (2.167)

where it is easy to see that Tj, ;. is symmetric and also zero on contraction of any pair of
indices, as a consequence of (2.166). For an odd number of indices we may further define

Toiy.in = (£00,)P1 L (€00) ™" Suver o con By o » (2.168)
where Ty 4, .. 4, is symmetric and traceless on the vectorial indices and satisfies the constraint

(0)a"Tgiy.in_1j = 0. (2.169)

For two symmetric spinorial tensors S1.a,..ans52,4..3,, their product are decomposed
into symmetric rank (n + m — 2r)-tensors, for r = 0,...m if n > m, where for each r,

ehim 6’87“%"517(0{1“&”77' Bl~~-/67‘S2aan7r+1-~~an+m—2r)')/1~~-’7'r , r=0,...,m. (2.170)

For two spinors 714, 72+ the resulting decomposition into irreducible representation spaces
is given by

Na 728 = M(aTl2g) + Eap 571 27 (2.171)
where 7)1(4723) may be re-expressed as a vector using (2.167). This result demonstrates

the decomposition of the product of two spin—% representations into j = 0, 1, scalar, vector,
irreducible components which are respectively antisymmetric, symmetric under interchange.
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3 Isospin

The symmetry which played a significant role in the early days of nuclear and particle
physics is isospin, which initially was based on the symmetry between neutrons and protons
as far as nuclear forces were concerned. The symmetry group is again SU(2) with of course
the same mathematical properties as discussed in its applications to rotations, but with a
very different physical interpretation. In order to distinguish this SU(2) group from various
others which arise in physics it is convenient to denote it as SU(2);.

From a modern perspective this symmetry arises since the basic QCD lagrangian de-
pends on the Dirac u and d quark fields only in terms of

q=<§>, ¢=(a d, (3.1)

in such a way that it is invariant under ¢ — Aq, § — gA~! for A € SU(2). This symmetry
is violated by quark mass terms since m,, # mg, although they are both tiny in relation to
other mass scales, and also by electromagnetic interactions since u, d have different electric
charges.

Neglecting such small effects there exist conserved charges I, Is which obey the SU(2)
commutation relations

[Ig,]i] = :|:Ii s [I+, I,] = 2[3 or [Ia, Ib] == ieabclca (3.2)
as in (2.41a),(2.41b) or (2.36), and also commute with the Hamiltonian
I, H] =0. (3.3)

The particle states must then form multiplets, with essentially the same mass, which trans-
form according to some SU(2); representations. Each particle is represented by an isospin
state |I I3) which form the basis states for a representation of dimension 27 + 1.

The simplest example is the proton and neutron which have I = % and I3 = %, —%
respectively. Neglecting other momentum and spin variables, the proton, neutron states
are a doublet (|p), |n)) and we must have

Llp) = 5lp), Isln) = —3ln), I-|p)=In), ILin)=p). (3.4)

Other examples of I = £ doublets are the kaons (K1), |K?)) and (|K°),|K~)). The pions
form a I =1 triplet (|7 7),|7%), 7)) so that

L(ja%),|n%, |7 7)) = (17),0,—|=7)),  I-|a*) =V2[a%), I_|x%) =V2z7). (3.5)

Another such triplet are the ¥ baryons (|$7),|2%),|£7)). Finally we note that the spin-3
baryons form a I = 3 multiplet (JA*F),[AT),|A%),|A™)). Low lying nuclei also belong to
isospin multiplets, sometimes with quite high values of I. For each multiplet the electric
charge for any particle is given by QQ = Qo+ I3, where Qg has the same value for all particles
in the multiplet.
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Isospin symmetry has implications beyond that of just classification of particle states
since the interactions between particles is also invariant. The fact that the isospin genera-
tors I, are conserved, (3.3), constrains dynamical processes such as scattering. Consider a
scattering process in which two particles, represented by isospin states |I; my), |I2 ma), scat-
ter to produce two potentially different particles, with isospin states |I3ms), |I4m4). The
scattering amplitude is (Isms, Iymy|T|I1my, Iama) and to the extent that the dynamics are
invariant under SU(2) isospin transformations this amplitude must transform covariantly,
i.e.

S° D (R DYDY (R DUV (R)DUZ (R (Ism's, Lym!y| T|Lym'y, Iym'y)
m/z,mla,m'1,m’2

= <Igm3,l4m4|T]11m1,Igm2> . (36)

This condition is solved by decomposing the initial and final states into states |[IM) with
definite total isospin using Clebsch-Gordan coefficients,

\I1m1,12m2> = Z |IM> <I1m1,I2m2 ‘IM>,

LM
(Ismg, Iyma| = Y _(Ismg, Lima|TM)(IM], (3.7)
LM
since then, as in (2.145),
(I'M'|T\IM) = Arép1dnm (3.8)
as a consequence of 7" being an isospin singlet operator. Hence we have
(Ismg, Iyma|T|Iymy, Iymo) =Y~ Ap (Isms, Iyma| IM)(Iymy, Tymy [IM) . (3.9)
I

The values of I which appear in this sum are restricted to those which can be formed by
states with isospin I7, I3 and also I3, I4. The observed scattering cross sections depend only
on ‘<I3m3, I4m4]T|I1m1, Igm2>‘2.

As an illustration we consider w/N scattering for N = p,n. In this case we can write

) = 133), %) = /213 0) = /314 D),
S L e Y 1] Nt Sy 1L S U S EOT)

using the Clebsch-Gordan coefficients which have been calculated in (2.107) and (2.108).
Hence we have the results for the scattering amplitudes

(mFpT|rtp) = A

)

;Zb NI

)

—A%), (3.11)

- | 2
(7 p|T|m"p) = 3 As + 3

(mOn|T |7~ p) = v2(A

3
2

N

3
3
so that three observable processes are reduced to two complex amplitudes A 3 A 1. For the

observable cross sections

Ontpomtp = k|A%‘2, O - = lk‘A% +2A:1 17, Or—posnOn = %k}A% —A%{Q, (3.12)



for k some isospin independent constant. There is no immediate algebraic relation between
the cross sections since Aj are complex. However at the correct energy As is large due to
2

the I = % A resonance, then the cross sections are in the ratios 1 : % : %.

An example with more precise predictions arises with NN — wd scattering, where d is

the deuteron, a pn bound state with I = (0. Hence the 7d state has only I = 1. Decomposing
NN states into states [IM) with I = 1,0 we have |pp) = [11), |pn) = %(\10>+\00>). Using

this we obtain o, .;04/0pp ntd = 3.

The examples of isospin symmetry described here involve essentially low energy pro-
cesses. Although it now appears rather fortuitous, depending on the lightness of the u,d
quarks in comparison with the others, it was clearly the first step in the quest for higher
symmetry groups in particle physics.

3.0.1 G-parity

G-parity is a discrete quantum number obtained by combining isospin with charge conjuga-
tion. Charge conjugation is a discrete Zo symmetry where the unitary charge conjugation
operator C acts on a particle state to give the associated anti-particle state with opposite
charge. If these are different any associated phase factor is unphysical, since it may be
absorbed into a redefinition of the states. In consequence the charge conjugation parity
is well defined only for particle states with all conserved charges zero. For pions we have
without any arbitrariness just

C|lx%) = |7%). (3.13)

The associated charged pion states are obtained, with standard isospin conventions, by

Ii|7%) = V2|r%). Since charge conjugation reverses the sign of all charges we must

take CI3C™! = —I3 and we require also CI.C™! = —I; (more generally if cr.c—t =

—e!®]_ CI_C~! = —e~ ™[, the dependence on a can be absorbed in a redefinition of I..).
By calculating CI4|7°) we then determine unambiguously

Clrt) = —|xT). (3.14)

G-parity is defined by combining C' with an isospin rotation,
G =Ce 2, (3.15)

The action of e~"™'2 on an isospin multiplet is determined for any representation by (2.75).
In this case we have

e—iﬂ12’W+> — ’ﬂ.—>, e—m12|7r0> — _’71_0>, e—iﬂ[z‘ﬂ.—> — |7r+>, (3.16)

and hence on any pion state
G|my = —|m). (3.17)

Conservation of G-parity ensures that in any mm scattering process only even numbers of
pions are produced. The notion of G-parity can be extended to other particles such as the
spin one meson w, with I = 0, and p*, p°, with I = 1. The neutral states have negative
parity under charge conjugation so the G-parity of w and the p’s is respectively 1 and —1.
This constrains various possible decay processes.
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4 Relativistic Symmetries, Lorentz and Poincaré Groups

Symmetry under rotations plays a crucial role in atomic physics, isospin is part of nuclear
physics but it is in high energy particle physics that relativistic Lorentz® transformations,
forming the Lorentz group, have a vital importance. Extending Lorentz transformations
by translations, in space and time, generates the Poincaré” group. Particle states can be
considered to be defined as belonging to irreducible representations of the Poincaré Group.

4.1 Lorentz Group

For space-time coordinates z* = (2%, 2!) € R* then the Lorentz group is defined to be the
group of transformations z# — z'# leaving the relativistic interval

z? = gzt goo =1, g90i = gio =0, gij = —dij, (4.1)

invariant. Assuming linearity a Lorentz transformation z# — z/#

't = AtV (4.2)
ensures
33/2 — ‘,1327 (43)
which requires, for arbitrary x
gapAa,uApu = Guv - (4.4)
Alternatively in matrix language
T L 1 0
A gA:g’ A:[A V]; g:[g/“’}: 0 7[3 . (45)

Matrices satisfying (4.5) belong to the group O(1,3) ~ O(3,1).

In general we define contravariant and covariant vectors, V# and U, under Lorentz
transformations by

VIS V=NV Uy U= Uy (A1) (4.6)
It is easy to see, using (4.4) or (4.5), V'Tg = VIATg = VTgA~L  that we may use g,

to lower indices, so that g,, V" is a covariant vector. Defining the inverse g"”, so that
g" gy, = 0%, we may also raise indices, g**U, is a contravariant vector.

4.1.1 Proof of Linearity

We here demonstrate that the only transformations which satisfy (4.3) are linear. We
rewrite (4.3) in the form
guda'*da’"" = g, datda” (4.7)

5Hendrik Antoon Lorentz, 1853-1928, Dutch. Nobel prize 1902.
"Jules Henri Poincaré, 1853-1912, French.
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and consider infinitesimal transformations
o't =gt + fH(z), da'* = da* + Oy fH(z) da” . (4.8)
Substituting (4.8) into (4.7) and requiring this to hold for any infinitesimal da* gives
G007 + GO f =0, (4.9)

or, with f, = g,»f?, we have the Killing equation,

Oufv +0ufu=0. (4.10)
Then we write
OOty + 00 fu) + 000 fo + B f) = 00 (B fu + Ouf) = 20,0, f, = 0. (4.11)
The solution is obviously linear in z,
fu(@) = ay +wpa”, (4.12)

and then substituting back in (4.10) gives
Wy +wyp = 0. (4.13)
For a, =0, (4.12) corresponds to an infinitesimal version of (4.2) with

A, = 0F, + Wty why, = g"wey . (4.14)

4.1.2 Structure of Lorentz Group

Taking the determinant of (4.5) gives
(detA)2 =1 = detA=+1. (4.15)
By considering the 00’th component we also get
(M%) =1+3,A%2>1 = A%>1 or A%< 1. (4.16)

The Lorentz group has four components according to the signs of det A and A% since no
continuous change in A can induce a change in these signs. For the component connected
to the identity we have det A = 1 and also A% > 1. This connected subgroup is denoted
SO(3,1)1.

Rotations form a subgroup of the Lorentz group, which is obtained by imposing ATA = I
as well as (4.5). In this case the Lorentz transform matrix has the form,

AR = <1 0>, RT'R =15, (4.17)

where R € O(3), det R = +1, represents a three dimensional rotation or reflection, obviously
ArARr = Arpr forming a reducible representation of this subgroup.
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Another special case is when

A=AT. (4.18)

To solve the constraint (4.5) we first write

A= coshf sinh&n?T
" \sinhfn B

) ., B'=B,n"n=1, (4.19)

where n is a 3-dimensional column vector, and then

Afgh = (Sinh Q(Cosﬁ On — Bn) Smhsierfﬁgsﬂhnengj’—_l;TBv (4.20)
Hence (4.5) requires
Bn = coshfn, B? —sinh?0nn’ =1I5. (4.21)
The solution is just
B = I3+ (cosh® — 1)nnT . (4.22)
The final expression for a general symmetric Lorentz transformation defining a boost is then
B(n) = <sfr?lslhﬁan I3 + (S:;EZTiTl)nnT> ’ (4.23)
where the parameter 6 has an infinite range. Acting on x*, using vector notation,
2’ = cosh02° +sinhfn - x,
x' =x + (coshf — 1)nn-x +sinhfAnz’. (4.24)

This represents a Lorentz boost with velocity v = tanh 6 n.

Boosts do not form a subgroup since they are not closed under group composition, in
general the product of two symmetric matrices is not symmetric, although there is a one
parameter subgroup for n fixed and 6 varying which is isomorphic to SO(1, 1) with matrices
as in (1.59). With Ar as in (4.17) then for B as in (4.23)

ArB(0,n)Ag ! = B(6, Rn), (4.25)

gives the rotated Lorentz boost. Any Lorentz transformation can be written as at of a
boost followed by a rotation. To show this we note that ATA is symmetric and positive so
we may define B = VATA = BT, corresponding to a boost. Then AB~! defines a rotation
since (AB"Y)TAB™! = B'ATAB ! =T and so AB™! = AR, or A = ArB, with Ag of the
form in (4.17).

4.2 Infinitesimal Lorentz Transformations and Commutation Relations

General infinitesimal Lorentz transformations have already been found in (4.14) with w*,
satisfying the conditions in (4.13). For two infinitesimal Lorentz transformations

Al'uu = 5”1/ + u}1#1/ s Ajuu = 5”1/ + WQMV ) (426)
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then
AP, = (A AT A9 AL, = 61, + [wa, wn]s (4.27)

where it is clear that A, = 6*, if either wi*, or w4, are zero.

For a relativistic quantum theory there must be unitary operators U[A] acting on the
associated vector space for each Lorentz transformation A which define a representation,

UA2)U[A1] = U[A2A4]. (4.28)
For an infinitesimal Lorentz transformation as in (4.13) we require

UA=1-1 %W“”Mpy, M, =—M,,. (4.29)

M,,, are the Lorentz group generators. Since we also have U[A™!] = 1+ i 2wt M, (4.27)
requires

U[A] =1-—13 [CL)Q,Wl]MVM#V
= U[A; UATYU[AS)U[A]
=1- [wfMu, 3w My,) (4.30)

or
[% wd My, %wl‘”’MJP] =ifwo, w1 My, [wo,w1]" = gop(wd 7w —wi*w”) . (4.31)

Since this is valid for any wi,w; we must have the commutation relations
(M, Myp) = i(gva Myup = 9uo Myp — gup Myuo + gup MW) ) (4.32)

where the four terms on the right side are essentially dictated by antisymmetry under p < v,
o < p. For a unitary representation we must have

Mt =M, . (4.33)

Just as in (2.128) we may define contravariant and covariant vector operators by requir-
ing

UAVHU[A] Y = (A7HR, VY, UAULUA ™ =U,AY,. (4.34)

For an infinitesimal transformation, with A as in (4.14) and U[A] as in (4.29), this gives
(M, Vo] = —i(0%,V, — 6%, V,,), M, Uy = =i(gp0Un — guoU,) - (4.35)
To understand further the commutation relations (4.32) we decompose it into a purely

spatial part and a part which mixes time and space (like magnetic and electric fields for the
field strength F},,. For spatial indices (4.32) becomes

[Mij, M) = —i(050 Mig — dse Mjp — 651 My + 0y Mjg,) - (4.36)

Defining
Jm = gemiiMyy = M = ijmdim, (4.37)
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and similarly J, = %Enklel we get
[Jma Jn] =—1 EmijEnkl M = %Z EmnjEilj M; = Z'<‘:mnjt]j . (4'38)

The commutation relations are identical with those obtained in (2.36) which is unsurpris-
ing since purely spatial Lorentz transformations reduce to the subgroup of rotations. As
previously, J = (Ji, Jo, J3) are identified with the angular momentum operators.

Besides the spatial commutators we consider also

[Mij, Mok] = —i(0jx Moi — dix Moy) , (4.39)
and
[Mo;, Moj] = —i M;; . (4.40)
Defining now
Ki=My, K=K, (4.41)

and, using (4.37), (4.39) and (4.40) become
[Ji, Kj] = igiijk , (4.42)

and
[KZ‘, Kj] = —1 5iijk . (4.43)

The commutator (4.43) shows that K = (K, K2, K3) is a vector operator, as in (2.130).
The — sign in the commutator is (4.43) reflects the non compact structure of the Lorentz
group SO(3,1), if the group were SO(4) then g, — 6, and there would be a +.
For ozt = wt, x" letting w;; = €;;1x0; and w% = w'y = v; then we have, for t = 2° and
X = (1'17 :L'Q? '/I:S)’
t=v-x, 0x =0 xx+vt, (4.44)

representing an infinitesimal rotation and Lorentz boost. Using (4.29) with (4.37) and (4.41)
gives correspondingly
UA=1-i0-J+iv-K, (4.45)

which shows that K is associated with boosts in the same way as J is with rotations, as
demonstrated by (2.32).

The commutation relations (4.38), (4.42) and (4.43) can be rewritten more simply by
defining
JE=4htiKy), JTT=J7, (4.46)

when they become
[Ji+, Jj+] = isiijk+ , [JZ'_, Jj_] = Z'Eijkjk_ , [JZ'+, Jj_] =0. (4.47)

The commutation relations are then two commuting copies of the standard angular momen-
tum commutation relations although the operators J* are not hermitian.
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4.3 Lorentz Group and Spinors

For SO(3,1) there are corresponding spinorial representations just as for SO(3). For SO(3)
a crucial role was played by the three Pauli matrices o. Here we define a four dimensional
extension by

o,=Lo)=0,, G.,=,—-0)=35,". (4.48)

Both o, and &, form a complete set of hermitian 2 x 2 matrices. As a consequence of (2.12)
we have
0uoy+0,0, =291, 0uoy+0,0, =291, (4.49)

and also
tr(ouoy) = 29 - (4.50)

Hence for a 2 x 2 matrix A we may write 4 = 1 tr(6#A) o,,.

4.3.1 Isomorphism SO(3,1) ~ Si(2,C)/Z»

The relation of SO(3,1) to the group of 2 x 2 complex matrices with determinant one is
an extension of the isomorphism SO(3) ~ SU(2)/Zsy. To demonstrate this we first describe
the one to one correspondence between real 4-vectors z, and hermitian 2 x 2 matrices x
where

ot —x = ot =x", ot = 1tr(a"x). (4.51)

With the standard conventions in (2.11)

0 3 12
‘= <af +x a:o ng)‘ (4.52)

2t +iz? 2V -2

Hence
detx = 2? = g a*2” . (4.53)
Defining
X =ouxt, (4.54)
then (4.49) are equivalent to
xx=a2, xx=2°1. (4.55)

For any A € SI(2,C) we may then define a linear transformation z# — z/# by
X — X = AxAT = /T, (4.56)
where, using det A = det AT =1,
det2’ =detx = 22=2". (4.57)
Hence this must be a real Lorentz transformation

o't = At (4.58)

44



From (4.56) this requires

oy = Ao, AT, AP, = Ttr(6t Ao, AT). (4.59)

To establish the converse we may use o, AT6” = 2tr(A) I to give
Ay =te(A))?, ouAeY = 2tr(AT) A, (4.60)

and hence, for trA = e™|trA|,
oAy
A=eo 4.61
N (4.61)
where the phase ¢’ may be determined up to 1 by imposing det A = 1. Hence for any
A e Sl(2,C), £A — A for any A € SO(3,1).

As special cases if AT = A1, so that A € SU(2), it is easy to see that 2/0 = 20 in (4.56)
and this is just a rotation of x as given by (2.19) and (2.22). If AT = A then A, given by
(4.59), is symmetric so this is a boost. Taking

Ap(0,n) =coshi0 I +sinhifn o, (4.62)
corresponds to the Lorentz boost in (4.23).

For a general infinitesimal Lorentz transformation as in (4.14) then, using A*, = 4 to
this order and 0,0 =41, (4.61) gives

A=TI+1w"0,0,, (4.63)
setting a = 0, since tr(w*’o,0,) = 0 as a consequence of w*” = —w"*. From (4.63)
Al=T1-1w"5,0,. (4.64)

Alternatively, with these expressions for A, AT,
AO'pAT =o0,+ iw“” (aﬂé,jap - apﬁuol,) =0, + %w““ (gl,p Tu — Yo a,,) , (4.65)
using, from (4.49),
Tu0u0p = Gup Oy — Ou0p0y , Op0u0y = 2Gpu Oy — 0uG,0y , (4.66)
and therefore (4.65) verifies Ao, AT = o, A#, with A#, given by (4.14).
In general (4.63),(4.64) may be written as
A=T—idwms,, , AV=T1+ilw™s,,, Suv = 3101,0,], S = 310(,0,), (4.67)

where 5,5, = SW,T are matrices each obeying the same commutation rules as M, in
(4.32). To verify this it is sufficient to check

Suv Op = 0p 8w = H(Gup Op — Gup Ov) s S 0p — Op Sy = 1(Gup Opp — Gup Ov) - (4.68)

45



4.3.2 Spinors, Dotted and Undotted Indices

In a similar fashion to the discussion in section 2.10 spinors are defined to transform under
the action of the S1(2,C) matrix A. Fundamental spinors v, x are required to transform as

Yo = ALY, x© - (AN, a,B=1,2. (4.69)

We may also, as hitherto, raise and lower spinor indices with the e-symbols 7, €ap, Where

e!?2 = g91 = 1, so that the representations defined by 14, ¥® in (4.69) are equivalent
P& = 50‘5w5, Xa = €ap Y2, (4.70)
as, since det A = 18,
(A™H% = e A0 55 (4.71)

The crucial difference between spinors for the Lorentz group SO(3,1) and those for
SO(3) is that conjugation now defines an inequivalent representation. Hence there are two
inequivalent two-component fundamental spinors. It is convenient to adopt the notational
convention that the conjugate spinors obtained from v, x* have dotted indices, & = 1, 2.
In general complex conjugation interchanges dotted and undotted spinor indices. For ¢, x
conjugation then defines the conjugate representation spinors

va=Wa), X =), (4.72)
which have the transformation rules, following from (4.69),
Ga = p(A e XF o A%, (4.73)
for
(AH% = (A*)* or A= Al (4.74)

Both A, A € Si(2,C) and obey the same group multiplication rules, since A;A; = A A,.
The corresponding e-symbols, 47, €ap, allow dotted indices to raised and lowered,

=P, Xa=cap X’ (4.75)
in accord with the conjugation of (4.70).

In terms of these conventions the hermitian 2 x 2 matrices defined in (4.48) are written
in terms of spinor index components as

(Tu)ad (5,)%, (4.76)

where
) aa

(O = Edﬁaaﬁ(au)ﬁﬁ ) (0u)aa = Eaﬁgd,@(&u)ﬁﬂ . (4.77)

8Using (2.158), €27 A% g55 = 05™tr(A) — Ag® = (A™1)5°, since for any 2 x 2 matrix the characteristic
equation requires A% — tr(A) A+ det AT =0, so that if det A = 1 then A~ = tr(A4) I — A.
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With the definitions in (4.51) and (4.54) then (4.77) requires tr(xX) = 2det x = 222. Using
the definition of A we may rewrite (4.59) in the form

Ao, A7 =0, AP, Ag, A7 =5, A", (4.78)
showing the essential symmetry under A «— A.

The independent fundamental spinors v, x and their conjugates 1, ¥ can be combined
as a single 4-component Dirac® spinor together with its conjugate in the form

v (U)o = b (1.79)
where ¥ = ¥t <? (1)> Correspondingly there are 4 x 4 Dirac matrices

Vo = <0 %“) : (4.80)

Ou

These satisfy, by virtue of (4.49), the Dirac algebra

YV + WV = 29w 1a . (4.81)
For these Dirac matrices
. 0 1
Y070 = ’YHT since Yo = <1 0) , (4.82)
and from (4.77)
8
1_ T _(e” 0 1 [(€ap O
CvC™" == for C = ( 0 5&6) , C0 = < 0 gab ) - (4.83)

4.3.3 Tensorial Representations

Both vector and spinor tensors are naturally defined in terms of the tensor products of
vectors satisfying (4.6) and correspondingly spinors satisfying (4.69) or (4.73). Thus for a
purely contragredient rank n tensor

THL- " AP, AP, TV (4.84)

For a general spinor with 25 lower undotted indices and 27 lower dotted indices
Tal-~~a2j7d1~--d2j Z) Aoélﬂ1 e 'AszJﬂQj Tﬁ1~~ﬂ2jﬂl~-ﬂ2j (A_l)ﬁldl s (A_l)BdeQj : (4'85)

The invariant tensors are just those already met together with the 4-index e-symbol,

gt gtvar EaBs EaB> (4.86)

)

9Paul Adrian Maurice Dirac, 1902-84, English. Nobel prize, 1933.
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as well as all those derived from these by raising or lowering indices. Here £°123 = 1 while
o123 = —1.

To obtain irreducible tensors it is sufficient to consider spinorial tensors as in (4.85)
which are totally symmetric in each set of indices

Tozl...agj,dl...o'zzj = T(al,..agj),(d1...dgj) : (487)
The resulting irreducible spinorial representation of SO(3,1) is labelled (7,7). Under com-
plex conjugation (j,7) — (7,7). Extending the counting in the SO(3) case, it is easy to
see that the dimension of the space of such tensors is (25 + 1)(27+ 1). The fundamental
spinors transform according to the (%, 0) and (0, %) representations while the Dirac spinor
corresponds to (3,0) @ (0,1). These representations are not unitary since there is no posi-
tive group invariant scalar product, for the simplest cases of a vector or a (1 0) spinor the

2
scalar products g, V#V" or 55a1/)a1/1ﬁ clearly have no definite sign.

The tensors products of irreducible tensors as in (4.87) may be decomposed just as for
SO(3) spinors giving
(J1,71) ® (2, J2) ~ b 6. (4.88)
l71—J2|<i<j1+i2
171—-721<3<71+72

Rank n vectorial tensors are related to spinorial tensors as in (4.85) for 2j = 27 = n by

)dnan (4.89)

T,ul...,un - Tal..,an,dl...dn (5_#1)(511041 ce (6

HUn

1n) real representation, then

If T is irreducible, as in (4.87), corresponding to the (37, 3

Ty,..un is symmetric and traceless.

A corollary of eé*¥?? being an invariant tensor is, from (4.78),

Ae“””pauﬁl,aaﬁpA_l =e"6,6,0,0,, Aa“”””&ua,,@,apfl_l =ec"r5,0,6,0,.

(4.90)

By virtue of Schur’s lemma these products of o-matrices must be proportional to the iden-

tity. With (2.12) we get

iEHVU'OU“&VUU&p200510253=i1, i&“ual)&“UV&UUp:&oUl&QJg =—il, (4.91)

using (0’05’1025’3)2 = 00g01020303020109 = —I, and similarly (500’15’20’3)2 = —1, by virtue

of (4.49). The two identities in (4.91) are related by conjugation. In terms of the Dirac

matrices defined in (4.80)

. L 0
31 €PN YoV = N2 = D05, Vs = (02 R b) : (4.92)

As a consequence of (4.91) we may further obtain'®

Lowopy = — 5zl 1 pops o _ i slbgv]
50,0, =—io" 5", 5MPo,0, =i0o". (4.93)

For a somewhat convoluted demonstration note, that since the indices only take four values,
M0 (,5,065,0\ = " 7P(0uGL06G 0N — 0uBL0o0NTp+ OpGyONGo0) — OuOrOLTo0,+ OATu0LT0,) = 0.
Then using (4.49) move oy or G to the right giving e*"°?0,6,0,5,0x + 4ex"’?0,5,0, = 0. Hence, with
(4.91), iox = —%E)\VUPO'V&UUP. Similarly i, = %@”"”51,0060. Using these results, i(oAdy — 0u05) =
—2ex""?(04Gs0,0y + 0u0,055,). The right hand side may be simplified using (4.49) again and leads to
just (4.93).
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Since tr(o(,0,)) = tr(o),0,
respectively so that for (1,
tensors

1) =0, (50[u61,])°‘5, (6[ual,]5)°"6 are symmetric in a < 3, & < f3
0) or (0,1) representations there are associated antisymmetric

Fuv = 5(01,5)*" Yap Fuw = 5(00,008)* Tap, (4.94)

which satisfy f,, = %isw"pﬁ,p, f,“, = —%iewc”’fgp. Only f. + f;w is a real tensor.

4.4 Poincaré Group

The complete space-time symmetry group includes translations as well as Lorentz transfor-
mations. For a Lorentz transformation A and a translation a the combined transformation
denoted by (A, a) gives
a — 2= AF Y+ ad” . (4.95)
(Asa)

These transformations form a group since
(AQ, ag)(Al, al) = (AgAl, Aoag + ag) s (A, a)fl = (Afl, —Aila) s (496)

with identity (I,0). The corresponding group is the Poincaré group, sometimes denoted as
ISO(3,1), if det A = 1. It contains the translation group T}, formed by (I, a), as a normal
subgroup and also the Lorentz group, formed by (A, 0). A general element may be written as
(Aya) = (I,a)(A,0) and the Poincaré Group can be identified with the semi-direct product
0(3, 1) X Ty.

If we define
(A, a) = (AQ, ag)fl(Al, al)fl(Ag, ag)(Al, al) , (497)

then direct calculation gives
A= A2_1A1_1A2 A1, a = Ag_lAl_l(Agal —ANag —ay + CLQ) . (498)
For infinitesimal transformations as in (4.26) we then have

Aty =608, + [wa,wi ]y, a’ = wd'a’ — wi'Lay . (4.99)

In a quantum theory there are associated unitary operators U[A, a] such that
U[Ag, az]U[Al, al] = U[AgAl, Aoaq + ag} . (4.100)

For an infinitesimal Lorentz transformation as in (4.14) and also for infinitesimal a we
require
UlA,a] =1 —i 3w M, +ia"P,, P,=P,, (4.101)

defining the generators P, in addition to M, = —M,,, discussed in section 4.2. To derive
the commutation relations we extend (4.30) to give

UA,a] =1 —ifwa, w1 M, + i (waar — wraz)* P,
= U[AQ, ag]_lU[Al, al]_lU[Ag, CLQ]U[Al, al]
=1~ [% uJZLW‘]\4/U/ - a,gu‘P/“ %wlUpMap - algPo-] . (4102)
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Hence, in addition to the [M, M] commutators which are given in (4.31) and (4.32), we
must have
[% wi”’ Mo, aj“PN] =i (wia2)" Py, [ag“PM, af’Pg] =0, (4.103)

or
(M, Ps| = i(9vo Py — 9uo P) [Py, Py] =0. (4.104)

This agrees with general form in (4.35) and shows that P, is a covariant 4-vector operator.
Since (A,0)(1,a)(A,0)~! = (I, Aa) and using (Aa)* P, = a*(PA),, we have for finite Lorentz
transformations

U[A,0] P,U[A, 07 = P,AY,. (4.105)
If we decompose
Pt =(H,P), P,=(H,-P), (4.106)
then using (4.37) and (4.41) the commutation relations become

and
[K;,H =1iPF;, [K;, Pj] =16;; H. (4.108)

4.5 Irreducible Representations of the Poincaré Group

It is convenient to write

where T'[a] are unitary operators corresponding to the abelian translation group 7y. In
general '
Tla) = e P (4.110)
As a consequence of (4.100)
U[A]T[a] = T[Aa]U[A]. (4.111)

The irreducible representations of the the translation subgroup 7} of the Poincaré Group
are one-dimensional and are defined in terms of vector |p) such that

Pulp) =pulp),  Tla]lp) = "Px|p), (4.112)

for any real 4-vector p, which labels the representation. As a consequence of (4.105)
PUA]lp) = (pA™),U[A]lp) (4.113)

so that U[A] acting on the states {|p)} generates a vector space V such that |p'), |p) belong
to Vif p/,, = (pA~1),, for some Lorentz transformation A. All such p/, p satisfy p'? = p? and
conversely for any p/, p satisfying this there is a Lorentz transformation linking p’, p. The
physically relevant cases arise for p?> > 0 and also we require, restricting A € SO(3,1)T,
po,Po > 0.
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The construction of representations of the Poincaré group is essentially identical with the
method of induced representations described in 1.4.1 for G = SO(3,1)! x Ty. A subgroup
H is identified by choosing a particular momentum p and then defining

Gy = {A: Ap = p}, (4.114)

the stability group or little group for p, the subgroup of SO(3,1)! leaving p invariant. For a
space V; formed by states {|p)} (additional labels are here suppressed) where

Pulp) = pulp),  Tlallp) = e Pe|p), (4.115)

then V5 must form a representation space for G since U[A] [p) € V; for any A € G by
virtue of (4.114). Hence Vj defines a representation for H = G ® Ty. The cosets G/H are
then labelled, for all p such that p? = p%, by any L(p) € SO(3,1)! where

Py = (ﬁL(p)_l)u, or equivalently p* = L(p)*,p", (4.116)

and, following the method of induced representations, a representation space for a repre-
sentation of G is then defined in terms of a basis

lp) =U[L(p)]|p) € Vp,  forall [p)eVs. (4.117)
Finding a representation of the Poincaré group then requires just the determination of

U[A] |p) for arbitrary A. Clearly, by virtue of (4.113), U[A] |p) must be a linear combination
of all states {|p')} where p'* = A, p”. Since p'* = L(p")*,p¥ we have

(L)' AL(p)) " p” = . (4.118)

It follows that .
L(Ap)~'AL(p) = A, € Gy, (4.119)

and hence )
U[A]|p) = U[L(Ap)]U[Ap] D) € Vap, (4.120)

o

where U[A,]|p) is determined by the representation of G5 on V.

For physical interest there are two distinct cases to consider.

4.5.1 Massive Representations

Here we assume p?> = m? > 0. It is simplest to choose for p the particular momentum
= (m,0), (4.121)
and, since p has no spatial part, then

Gy~ SO(3), (4.122)
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since the condition Ap = p restricts A to the form given in (4.17). As in (4.116) L(p), for
any p such that p?> = m?2, pg > 0, is then a Lorentz transformation such that p* = L(p)*,p".
With (4.17) defining Ag for any R € SO(3), then (4.119) requires

L(Ap) 'AL(p) = Awppny,  R(p,A) € SO(3). (4.123)
R(p, A) is a Wigner rotation. (4.123) ensures that

U[L(Ap)] " U[A] [p) = UlAgp,n)] 1) - (4.124)

For any R, U[ARr]|p) is an eigenvector of P* with eigenvalue p* and so is a linear combi-
nation of all states {|p)}. In this case V; must form a representation space for SO(3). For
irreducible representations Vj then has a basis, as described in section 2.5, which here we
label by s = 0, 1 5,1... and s3 = —s,—s +1,...,s. Hence, assuming {|p, s s3)} forms such
an irreducible space,

U[AR] B, s 53) = Z!p,wza D). (R), (4.125)

with D(*)(R) standard SO(3) rotation matrices. Extending the definition (4.117) to define
a corresponding basis for any p

[P, s s3) = U[L(p)] [P, 5 53) (4.126)
then applying (4.125) in (4.124) gives
— (s)
U[A] ‘p7883> - Z ’Ap,SSg) Ds s3 (iﬁ(pa A)) . (4127)
s’3

The states {|p, s s3) : p> = m?,pp > 0} then provide a basis for an irreducible representation
space Vp, s for SO(3, 1)!. The representation extends to the full Poincaré group since for
translations, from (4.112),

T(a] [p, s s3) = e |p, 5 53) . (4.128)

The states |p, ss3) are obviously interpreted as single particle states for a particle with mass
m and spin s.

In terms of these states there is a group invariant scalar product
(V' s s5|p, s s3) = (2m)°2p° (D' — D) sy (4.129)
which is positive so the representation is unitary.

The precise definition of the representation depends on the choice of L(p) satisfying
(4.116). This doest not specify L(p) uniquely since if L(p) is one solution so is L(p)A for
any A € Gj. One definite choice is to take

L(p) = B(a,n), for p"=m(cosha,sinhan), (4.130)

where B(a,n) is the boost Lorentz transformation defined in (4.23). An alternative pre-
scription is

L(p) = AgmyB(a,e3), for R(n)= R(¢,es3)R(0,e2) R(—0,e3), (4.131)
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where « is determined by p® as in (4.130), Ag, as in (4.17), corresponds to a rotation R,
and 0, ¢ are the polar angles specifying n, so that R(n) rotates es into n, R;3(n) = n;. The
two definitions, (4.130) and (4.131), give different but equivalent bases for V,, ;.

If we consider a rotation Ar and use the definition (4.130) then L(Agrp) = B(a, Rn)
and, by virtue of (4.25),
B(a, Rn) 'ArB(a,n) = Ag. (4.132)

The Wigner rotation given by (4.123) hence becomes, with this definition of L(p), just the
original rotation

R(p,Ar) = R, (4.133)

so that (4.125) extends to any momentum p.

4.5.2 Massless Representations

The construction of representations for the massless case can be carried out in a similar
fashion to that just considered. When p? = 0 then the method requires choosing a particular
momentum p satisfying this from which all other momenta with p? = 0 can be obtained by
a Lorentz transformation. There is no rest frame as in (4.121) and we now take

P =0(1,0,0,1),  &>0, (4.134)

with @ some arbitrary fixed choice. It is then necessary to identify the little group in this
case as defined by (4.114). To achieve this we consider infinitesimal Lorentz transformations
as in (4.14) when the necessary requirement reduces to

Wt =0, Wt = —wh, (4.135)

This linear equation is easy to solve giving

wog = 0, wlo = —w13, w20 = —w23, w30 =0. (4.136)
These reduce the six independent w"” = —w"* to three so that
%WWMMV = w2 My + WO (Mo + Msy) + W% (Mo + Msy) . (4.137)

Identifying the operators
J3 = Mz, Ey = Mo + Mz = K1 + Jz, Ey = Mo + M3z = Ko — J1, (4.138)
we find the commutators from (4.32), or from (2.36), (4.42) and (4.43),

[J3, E1] = iEs, [J3, E2] = —iEy, [E1, E2) =0. (4.139)

A unitary operator corresponding to finite group elements of Gy is then

e—i(a1E1+a2E2)6—i@J3 , (4140)
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Noting that

o :
—i©J3 i©J5 _ . O ) a’\ _ [(cos® —sin®) (a;
e "B By +agEp)e’™ = ar” By ay” By, (a2@> = (sin@ 050 ) \ay)  (4141)

then if (4.140) corresponds to a group element (0, ay, az), with © an angle with period 2,
we have the group multiplication rule

(@/, a'l, alz)(@, ay, CLQ) = (@, + @, (119, + a'l, a2®/ + alg) . (4142)
The group multiplication rule (4.142) is essentially identical to (4.96). The group is then

isomorphic with the group formed by rotations and translations on two dimensional space,
so that for the massless case we have the little group

Gp~ 150(2) ~ SO(2) X Ty (4.143)

The representations of this group can be obtained in a very similar fashion to that of the
Poincaré group. Define vectors |a1, az) such that

(E1, E9)|b1,b2) = (b1,b2)|b1,b2), (4.144)
and then we assume, consistency with the group multiplication (4.142),
€_i®J3 ‘bl, b2> = €_ihe‘b1@, b2®> s (4.145)

linking all (b1, b2) with constant ¢ = b12 + by2. This irreducible representation of 1.5 0(2),
labelled by ¢, h, is infinite dimensional. However there are one-dimensional representations,
corresponding to taking ¢ = 0, generated from a vector |h) such that

Eq|h) = Eslh) =0, J3lh) = h|h), (4.146)
so that the essential group action is
e ©1n) = e7Op) . (4.147)

For applications to representations of the Poincaré group e “©”/3 corresponds to a subgroup
of the SO(3) rotation group so it is necessary to require in (4.146) and (4.147)

h=0,+1 £1,.... (4.148)

For the associated Lorentz transformations then a general element corresponding to the
little group is A(g, 4,)Ae Where

1+ %(af + (122) a1 a2 —%(af + a22)
al 1 0 —ai
A(a1,az) = a 0 1 a , (4.149)

%(CHZ + a) ap az 1-— %(af + a)
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and

0 0
cos® —sin®
sin® cos©®

0 0

It is easy to see that A(g, 4,)p = Aep = p with p as in (4.134).

Ao = (4.150)

o O o
— o O O

The construction of the representation space V), when p? = 0 proceeds in a very similar
fashion as in the massive case. Neglecting infinite dimensional representations of the little
group, then starting from a vector |p, h) satisfying

Prp, by = p![p, k), Jslp,h) = hlp,h), (4.151)
a basis {|p, h) : p*> = 0,po > 0}, for V}, is formed by
lp,h) = U[L(p)][p,;h), for p"= L(p)*,p", (4.152)
where L(p) is assumed to be determined uniquely by p. Using
L(Ap)"'AL(p) = A ap)Ne € G5, for ara(p,A), O(p,A), (4.153)
and '
UM (ay,a)|U[AS] 1B, 1) = [p, h) e "9, (4.154)

then, for any A € SO(3,1)7, the action of the corresponding unitary operator on V} is given
by
U[A][p, h) = |Ap, h) e~ O (4.155)

For p as in (4.134), and
P! =w(l,n), w>0, (4.156)

then L(p), satisfying (4.116), is determined by assuming it is given by the expression (4.131)
with now e = w/w and R(n) the same rotation depending on 6, ¢, the spherical polar
angles specifying n. Since J3U[B(a,e3)]|p,h) = hU[B(a,e3)]|p,h), from (4.151), and
U[AR(H)]JgU[AR(n)]_l = J;iRi3(n) = n-J then

The component of the angular momentum along the direction of motion, or helicity, is then
h, taking values as in (4.148).

The irreducible representations of the Poincaré group for massless particles require only
a single helicity h. If the symmetry group is extended to include parity, corresponding to
spatial reflections, then it is necessary for there to be particle states with both helicities
+h. When parity is a symmetry there is an additional unitary operator P with the action
on the Poincaré group generators

PIP =3, PKP'=-K, PHP '=H, PPP'!=-P. (4.158)

In consequence PP - JP~! = —P - J so that, from (4.157), P|p, h) must have helicity —h,
so we must have P|p, h) = n|p, —h), for some phase 7, usually n = £1. Thus photons have
helicity +1 and gravitons +2. However neutrinos, if they were exactly massless, which is no
longer compatible with experiment, need only have helicity —% since their weak interactions
do not conserve parity and experimentally only involve —% helicity.
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4.5.3 Spinorial Treatment

Calculations involving Lorentz transformations are almost always much simpler in terms
of SI(2,C) matrices, making use of the isomorphism described in section 4.3, rather than
working out products of 4 x 4 matrices A. As an illustration we re-express some of the
above discussion for massless representations in terms of spinors.

Defining pag = pu(0#)aa, as in (4.51), then since p? = 0, by virtue of (4.53),

detpac] =0 = Pag = Aada - (4.159)

The spinor A, and its conjugate A\ are arbitrary up to the U(1) transformation given by
Ao — Ao Ay — g€, To determine A\ precisely we choose the phase so that for p

given by (4.134), since [Paa) = 2w (é (1)>, we take

A=V20 <é> . (4.160)

Then for any p = L(p)p we define a unique spinor satisfying (4.159) by

Ap = A(p)A  where L(p) oIS A(p), A(p)=1. (4.161)

From (4.149) and (4.150) we have correspondingly

1 al — ia2
A A =
(a1,2) SO(3,1)——:S‘l(2,(C) (a1,02) <0 1 ) ’

e_%ie 0
A — Ag = . . 4.162
© so@1)—siac) P ( 11@) ( )

For any Lorentz transformation A — A then (4.153) becomes equivalently
A(Ap) T ANA(p) = Ay an) A6, (4.163)
and with the definition (4.161) we get
Apdy = Aype 20@A) (4.164)

This provides a more convenient method of calculating ©(p, A) if required.

4.6 Casimir Operators

For the rotation group then from the generators J it is possible to construct an invariant
operator J? which commutes with all generators, as in (2.63), so that all vectors belonging
to any irreducible representation space have the same eigenvalue, for V;, j(j + 1). Such
operators, which are quadratic or possibly higher order in the generators, are generically
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called Casimir'' operators. Of course only algebraically independent Casimir operators are
of interest.

For the Lorentz group, SO(3,1), there are two basic Casimir operators which can be
formed from M, using the invariant tensors

TM™W My, 3P My M,, . (4.165)
In terms of the generators J, K, defined in (4.37),(4.41), and then J*, defined in (4.46),
MM My, = 532 —K?) =JT2 4+ 372,
LMl M My, =T - K= —i(Jt? = J72). (4.166)

Since J* both obey standard angular momentum commutation relations, as in (4.47), then
for finite dimensional irreducible representations

IV =G+, I =50+, 5 7=05.1,

w\w

(4.167)

w\v—‘

For the fundamental spinor representation the generators s,, = %z 0,0y, as in (4.67),
the associated Casimir operators become

1 v _ 1 _pu= 3
15" s = — 550" (0u0y — 0,6,) = 71
1 _pvop _ 1 _pvop _ _3
3 SuwSop = 35 € 00,050, = —5i1, (4.168)

using (4.49) and (4.91). As expected this is in accord with (4.166) and (4.167) for j = %,
7 = 0. Conversely for 5,, the role of j and 7 are interchanged since this is the conjugate
representation.

For the Poincaré group then (4.165) no longer provides Casimir operators because they
fail to commute with P,. There is now only a single quadratic Casimir

P? = P'P,, (4.169)

whose eigenvalues acting on the irreducible spaces Vi, s, Vs, corresponding to the spaces of
relativistic single particle states, give the invariant m? in the massive case or zero in the
massless case. However the irreducible representations are also characterised by a spin label
s, helicity in the massless case. To find an invariant characterisation of this we introduce
the Pauli-Lubanski vector,

WH = Lemworp = Letvorn, B, . (4.170)

Using PP, P, = 0 we have
WH P, =0. (4.171)

Since €*¥7? is an invariant tensor then W*# should be a contravariant 4-vector, to verify this
we may use

(WH, A7 M, = — Liet 7P (Pyw?, My, + Py Mypw's + Py Mypw™,)
= Jiw"\eNTP P, My, = i wh \ WP, (4.172)

"Hendrik Brugt Gerhard Casimir, 1909-2000, Dutch.
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to obtain
[(WH, My = i(FoW, — 64, W) . (4.173)

With (4.171) and (4.173) we may then easily derive

[WH W"] = i et P P,W, . (4.174)

It follows from (4.171) and (4.173) that
W, WH, (4.175)
is a scalar commuting with P,,, M, and so providing an additional Casimir operator.
For the massive representations then, for p as in (4.121),
WOp,ss3) =0, Wilp, s s3) = —mg;jMjk|p, s s3) = —m J;[p, s 53) (4.176)

so that
W, WHp, s s3) = —m? I?|p, s s3) = —m?s(s + 1)|p, 5 53) . (4.177)

Hence W,W* has the eigenvalue —m?s(s + 1) for all vectors in the representation space
Vm,s-

For the massless representations then, for p as in (4.134),

W1|ﬁ,h>:&E2|ﬁ,h>:0, W2|ﬁah>:_(;}E1|ﬁah>:0a

using (4.146). Since WH, P# are both contravariant 4-vectors the result (4.178) requires
(WH+hPH)p,h) =0, (4.179)

for all vectors providing a basis for V;,. This provides an invariant characterisation of the
helicity h on this representation space.

4.7 Quantum Fields

To construct a relativistic quantum mechanics compatible with the general principles of
quantum mechanics it is essentially inevitable to use quantum field theory. The quantum
fields are required to have simple transformation properties under the symmetry trans-
formations belonging to the Poincaré group. For a simple scalar field, depending on the
space-time coordinates z*, this is achieved by

UIA, a)gp(x)U[A,a] ™t = ¢(Ax +a), (4.180)

where U[A, a] are the unitary operators satisfying (4.100). For an infinitesimal transforma-
tion, with A as in (4.14) and U as in (4.101), this gives

—i[ 30" My, — a* By, $(@)] = (w10, + a*),d (), (4.181)
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or

(M, ¢(2)] = —Luw¢(z), Ly =i(,0, —2,0,), [Py, d(z)] = —i0up(x). (4.182)

L,, and i0, obey the same commutation relations as M, and P, in (4.32) and (4.104).
Note that, with (4.106), [P, ¢] =i V¢.

To describe particles with spin the quantum fields are required to transform according
to a finite dimensional representation of the Lorentz group so that (4.180) is extended to

UIA, a)¢(z)U[A,a] ' = D(A) " tp(Az + a), (4.183)

regarding ¢ now as a column vector and suppressing matrix indices. For an infinitesimal
Lorentz transformation then assuming

D(A) =I—1 %W'LWS/W ) S,ul/ = _SVM , (4.184)
the commutator with M, in (4.182) is extended to

My, ¢(x)] = = (Lyw + S ) () - (4.185)
The matrix generators S,,, obey the same commutators as M, in (4.32).

The relation of the quantum fields to the particle state representations considered in 4.5
is elucidated by considering, considering first Vy, s,

(0l¢()|p, s s3) = ulp, s3)e” ", p* =m?*. (4.186)

Here |0) is the vacuum state, which is just a singlet under the Poincaré group, U[A, a]|0) =
|0). Tt is easy to check that (4.186) is accord with translation invariance using (4.128).
Using (4.183), for a = 0, A — A~!, with (4.127) we get

D(A)u(p,s3) = >_ u(Ap, s5) D), (R(p. A)), (4.187)

s'3

which is directly analogous to (4.127) but involves the finite dimensional representation
matrix D(A). u(p, s3) thus allows the complicated Wigner rotation of spin indices given by
R(p, A) to be replaced by a Lorentz transformation, in some representation, depending just
on A. To determine u(p, s3) precisely so as to be in accord with (4.187) it is sufficient to
follow the identical route to that which determined the states |p, s s3) in 4.5.1. Thus it is
sufficient to require, as in (4.125),

D(AR) u(p, s3) = > u(p, s's) Dgfjsg(R) : (4.188)

s'3

and then define, as in (4.126),

u(p, s3) = D(L(p)) u(p, s3) . (4.189)

For A reduced to a rotation Ag, as in (4.17), the representation given by the matrices D(AR)
decomposes into a direct sum of irreducible SO(3) representations DY) (R). For (4.188) to
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be possible this decomposition must include, by virtue of Schur’s lemmas, the irreducible
representation j = s, with any other DY), j # s, annihilating u(p, s3).

For the zero mass case the discussion is more involved so we focus on a particular case
when the helicity h = 1 and the associated quantum field is a 4-vector A*. Replacing
(4.186) we require

(0]A*(z)[p, 1) = e*(p)e”™*,  p*=0. (4.190)

et(p) is referred to as a polarisation vector. For 4-vectors there is an associated represen-
tation of the Lorentz group which is just given, of course, by the Lorentz transformation
matrices A themselves. When p = p as in (4.134) then from the little group transformations
as in (4.154) we require, for h =1,

Aoe(p) = e(p) e . (4.191)

Using (4.150) this determines €(p) to be

e'(p) = 5(0,1,i,0), (4.192)
with a normalisation €* - ¢ = —1. Using the explicit form for A, 4,) in (4.149) we then
obtain

A(al,az)dﬁ) =€(p)+cp, c= %((11 +ag) . (4.193)

For general momentum p = w(1,n), p?> = 0, as in (4.156), we may define, for L(p) given by
(4.131),
e(p) = L(p) €(p) = Ag(n) €(B) , (4.194)
since B(a, e3)e(p) = €(p), and where the rotation R(n) is determined by n just as in (4.131).
With the definition (4.194)
pu€”(p) = pue”(p) = 0. (4.195)

For a general Lorentz transformation A then from (4.153) and (4.191),(4.192)
Ae(p) = (e(Ap) + c Ap) e 0PN, (4.196)

for some ¢ depending on p, A. This matches (4.155), for h = 1, save for the inhomogeneous
term proportional to ¢ (for h = —1 it is sufficient to take e(p) — €(p)*). (4.196) shows that
€(p) does not transform in a Lorentz covariant fashion. Homogeneous Lorentz transforma-
tions are obtained if, instead of considering just €(p), we consider the equivalence classes
polarisation vectors {e(p) :~} with the equivalence relation

€(p) ~ e(p) +cp, for arbitrary c. (4.197)

This is the same as saying that the polarisation vectors e(p) are arbitrary up to the addition
of any multiple of the momentum vector p. It is important to note that, because of (4.195),
that scalar products of polarisation vectors depend only on their equivalence classes so that

€(p)"-€(p) =e(p)” -elp) for €(p)~e(p). (4.198)
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The gauge freedom in (4.197) is a reflection of gauge invariance which is a necessary feature
of field theories when massless particles are described by quantum fields transforming in a
Lorentz covariant fashion.

In general Lorentz covariant fields contain more degrees of freedom than those for the
associated particle which are labelled by the spin or helicity in the massless case. It is then
necessary to impose supplementary conditions to reduce the number of degrees of freedom,
e.g. for a massive 4-vector field ¢*, associated with a spin one particle, requiring 9,,¢* = 0.
For the massless case then there are gauge transformations belonging to a gauge group
which eliminate degrees of freedom so that just two helicities remain. Although this can be
achieved for free particles of arbitrary spin there are inconsistencies when interactions are
introduced for higher spins, beyond spin one in the massive case with spin two also allowed
for massless particles.

5 Lie Groups and Lie Algebras

Although many discussions of groups emphasise finite discrete groups the groups of most
widespread relevance in high energy physics are Lie groups which depend continuously on a
finite number of parameters. In many ways the theory of Lie'? groups is more accessible than
that for finite discrete groups, the classification of the former was completed by Cartan'
over 100 years ago while the latter was only finalised in the late 1970’s and early 1980’s.

A Lie Group is of course a group but also has the structure of a differentiable manifold, so
that some of the methods of differential geometry are relevant. It is important to recognise
that abstract group elements cannot be added, unlike matrices, so the notion of derivative
needs some care. For a Lie group G, with an associated n-dimensional differential manifold
Mg, then for an arbitrary element

gla) € G, a=(al,...,a") €R™ coordinates on Mg . (5.1)

n is the dimension of the Lie group GG. For any interesting Mg no choice of coordinates is
valid on the whole of M, it is necessary to choose different coordinates for various subsets of
Mg, which collectively cover the whole of Mg and form a corresponding set of coordinate
charts, and then require that there are smooth transformations between coordinates on
the overlaps between coordinate charts. Such issues are generally mentioned here only in
passing.

For group multiplication we then require

gla)gb) =g(c) = " =¢"(a,b), r=1,...,n, (5.2)

where ¢" is continuously differentiable. It is generally convenient to choose the origin of
the coordinates to be the identity so that

g(0)=e = ¢"(0,a)=¢"(a,0)=a", (5.3)

12Marius Sophus Lie, 1842-1899, Norwegian.
13Elie Joseph Cartan, 1869-1951, French.
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and then for the inverse

9@t =gla) = ¢'(a.a)=¢"(a,a)=0. (5-4)

The crucial associativity condition is then

9(a)(g(b)g(c)) = (9(a)g(b))g(c) = ¥"(a,¢(b,c) =¢"(¢(a;b),c). (5.5)
A Lie group may be identified with the associated differentiable manifold Mg together with
a map ¢ : Mg x Mg — Mg, where ¢ satisfies (5.3), (5.4) and (5.5).

For an abelian group ¢(a,b) = ¢(b,a) and it is possible to choose coordinates such that
¢"(a,b) =a" +0b", (5.6)

and in general if we Taylor expand ¢ we must have
O (a,b) =a” +b" + g a’bt + O(a®b,ab?), @ = —a" + g a’al +0(a®). (5.7)

As will become apparent the coefficients ¢'s;, or rather fs = [, which satisfy conditions
arising from the associativity condition (5.5), essentially determine the various possible Lie
groups.

As an illustration we return again to SU(2). For 2 x 2 matrices A we may express them
in terms of the Pauli matrices by

A=uyl+iu-o, Al =ugl—iu-o. (5.8)
Requiring ug,u to be real then
ATA = (u@ +u?) I, det A = ug? +u?. (5.9)

Hence
AeSU(2) = u@ +ut=1. (5.10)

The condition u¢® +u? = 1 defines the three dimensional sphere S3 embedded in R, so that
My (g) =~ S3. In terms of differential geometry all points on S3 are equivalent but here
the pole up = 1, u = 0 is special as it corresponds to the identity. For SO(3) then, since
+A correspond to the same element of SO(3), we must identify (ug,u) and —(up,u), i.e.
antipodal points at the ends of any diameter on S3. In the hemisphere 1y > 0 we may use
u, |u| <1 as coordinates for SU(2), since then ugp = v/1 — u?. Then group multiplication
defines p(u,v) =u+v—-uxv+....

For A € SI(2,C) then if ATA = €2V, for VI =V, R = Ae™V satisfies RTR = I. Since
then det R = ¢ while deteV = (V) is real, det A = 1 requires both det R = 1 and
tr(V) = 0. Hence there is a unique decomposition A = Re" with V = V;o; so that the
group manifold Mg c) = S3 x R3.
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5.0.1 Vector Fields, Differential Forms and Lie Brackets

For any differentiable n-dimensional manifold M, with coordinates z?, then scalar functions
f+ M — R are defined in terms of these coordinates by f(x) such that under a change of
coordinates z' — ' we have f(z) = f’(2). Vector fields are defined in terms of differential
operators acting on scalar functions

; 0
X(z) = X"(z) ek (5.11)
where for the z — 2’ change in coordinates we require
9l .
X9 (z) 8"; = X'i(2)). (5.12)

For each x the vector fields belong to a linear vector space T, (M) of dimension n, the
tangent space at the point specified by .

For two vector fields X, Y belonging to T;(M) the Lie bracket, or commutator, defines
a further vector field

where

(X, Y])!(z) = X(2)Y(z) - YV (2)X(z), (5.14)
since, for a change = — 2/ and using (5.12),
[X, Y]/ = [Xlayl] ) (5.15)

as a consequence of 0%z _ 9%z The Lie bracket is clearly linear, so that for any

Ox3 Oz Oxkoxi
XY, ZeT, (M)

[aX + BY,Z] = alX, Y]+ B[Y, Z], (5.16)

as in necessary for the Lie bracket to be defined on the vector space T,(M), and it also
satisfies crucially the Jacobi' identity, which requires

[Xa [KZ]]+[Zv [XaYHJrD/a [ZvX]] =0. (5'17)

This follows directly from the definition of the Lie Bracket as a commutator of differential
operators.

Dual to vector fields are one-forms, belonging to T, (M)*,
w(z) = w;i(z) da?, (5.18)
where (dz’,9;) = §%. For x — 2’ now

ox’
wj(z) B (). (5.19)

14 Carl Gustav Jacob Jacobi, 1804-1851, German.
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For p-forms
p(x) = %!pil,_,ip (z)dz™ A - Adar, dz® Ada? = —da? Adat, (5.20)

so that pi,. i, = pj;,...i,)- The transformations p — p' for a change of coordinates z — z’ are
the natural multi-linear extension of (5.19). For an n-dimensional space da/" A- - - Adz/™ =
det [%] dz®t A--- Adz’ and we may require

dz* A--- Ada'n =gt dy (5.21)

with € the n-dimensional antisymmetric symbol and d"z the corresponding volume
element. If p is a n-form and M,, a n-dimensional manifold this allows the definition of the

integral
/ p. (5.22)

The exterior derivative d acts on p-forms to give (p + 1)-forms, dp = da® A 9;p. For the
one-form in (5.18) the corresponding two-form is then given by

(dw)ij(z) = Oiwj(x) — Ojwi(x) . (5.23)
Of course (dw) = d'w’ with d’ = dz’'9}. In general d2 = 0. If p is a closed p-form then
dp=0. (5.24)
A trivial solution of (5.24) is provided by
p=dw, (5.25)

for some (p —1)-form w. In this case p is ezact. If the n-form p in (5.22) is exact and if also
if M,, is closed then the integral is zero.

5.1 Lie Algebras

The additional structure associated with a differential manifold M corresponding to a Lie
group G ensures that the tangent spaces T,(M¢), for a point on the manifold for which the
group element is g, can be related by group transformations. In particular the tangent space
at the origin T, (M) plays a special role and together with the associated Lie bracket [, |
defines the Lie algebra g for the Lie group. For all points on Mg there is a space of vector
fields which are invariant in a precise fashion under the action of group transformations
and which belong to a Lie algebra isomorphic to g. There are also corresponding invariant
one-forms.

To demonstrate these results we consider how a group element close to the identity
generates a small change in an arbitrary group element g(b) when multiplied on the right,

g(b+db) = g(b)g(#), 6 infinitesimal = b +db" = ¢"(b,0), (5.26)
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so that 9

db" = 6%u,"(b), we" (b)) = 504 ©"(b,0)) o’
Here we use a, b, ¢ as indices referring to components for vectors or one-forms belonging to
Te(Mg) or its dual (which must be distinguished from their use as coordinates) and r, s, t
for indices at an arbitrary point. To consider the group action on the tangent spaces we
analyse the infinitesimal variation of (5.2) for fixed g(a),

g(c+de) = g(a) g(b+db) = g(c) g(0) (5.28)

(5.27)

so that, for fixed g(a),
de" = 0% pg"(¢) = db® As%(b) g (), (5.29)

using (5.27) and defining A(b) as the matrix inverse of p(b),
At 0] = (a0, A (D) pa" (b) = 65 (5.30)

Hence from from (5.29)

o As?(b) pa" (c) . (5.31)

If near the identity we assume (5.7) then py*(0) = d,°.
By virtue of (5.31)

) LA
g~ 1" ) e g = Tale):

Tu(b) = pa*(b) (5.32)
define a basis {T, : a = 1,...,n} of left-invariant vector fields belonging to T'(Mg¢), since
they are unchanged as linear differential operators under transformations corresponding to
g(b) — g(c) = g(a)g(b). Furthermore the corresponding vector space, formed by constant
linear combinations g = {#%T,}, is closed under taking the Lie bracket for any two vectors
belonging to g and defines the Lie algebra.

To verify closure we consider the second derivative of ¢"(b) where from (5.31) and (5.32)

QCT
e O () 00 = e (DT () (A1) e (€)
= 112" (0) (Ty (D) A (D) e (€) + A (D) Ty (e (<)) - (5.33)
For any matrix X ! = —X~1§X X! so that from (5.30)
Ty(D)A(B) = =As (D) (Tp(b) ™ (b)) Au(b) , (5.34)

which allows (5.33) to be written as

S 826T u (& T T
pa* D) (0) oo = =Ty (B)pia™ (D) M By () + Ty(e)me” () (5.35)
or, transporting all indices so as to refer to the identity tangent space,
S 82CT (& T (& T C
Ha® () (0) o Ar(e) = = (Ty (D) wa” (b)) A“(0) + (Th()pa” (€)M (c) (5.36)
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Since 52 52
c’ c’
= 5.37
obsobt  Obtobs’ ( )
the right hand side of (5.36) must be symmetric in a,b. Imposing that the antisymmetric
part vanishes requires

(Ta(b)ﬂbr(b) - Tb(b)ﬂar(b)))‘rc(b) = [ab (5.38)

where f%; are the structure constants for the Lie algebra. They are constants since (5.36)
requires that (5.38) is invariant under b — c. Clearly

fab = 1% ] (5.39)

From (5.30), (5.38) can be equally written just as first order differential equations in terms
of p,

(Tap” = Typa” = fap i’ (5.40)
or more simply it determines the Lie brackets of the vector fields in (5.32)
(1o, Ty] = fa Tt (5.41)
ensuring that the Lie algebra is closed.
The Jacobi identity (5.17) requires
[Tm [Tln Tc]] + [T07 [TCU Tb“ + [Tba [ch Ta]] = 07 (542)
or in terms of the structure constants
e d e d e d _
adf be 1+ f cdf ab T f bdf ca=0. (543)

(5.43) is a necessary integrability condition for (5.40) which in turn is necessary for the
integrability of (5.31).

The results (5.31), (5.40) with (5.42) and (5.39) are the contents of Lie’s fundamental
theorems for Lie groups.

Alternatively from (5.33) using

D (0) = 1 (6 g M () (), (5.44)

we may obtain

s t 820r c s t 9 c t u 0 c
ta® (0) 1" (b) W/\r (¢) = pa®(D) ' (b) %As (0) — ' (c)pa”(c) %Au (c). (5.45)

In a similar fashion as before this leads to

(D)) 535 2:5(0) — 0 0)a" 0) A" (6) = o (5.40)
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which is equivalent to (5.38), or

0 c 9 c _ __ pc a b
g A (0) = 5 A (0) = —Fa M (DA (D). (5.47)

Defining the left invariant one-forms
w(b) = db" N\ (D), (5.48)
the result is expressible more succinctly, as consequence of (5.23), by
dw® = —%fbbc WP A WC. (5.49)

Note that, using d(w® A w®) = dw? A w® — wb A dw®, d?w? = —%f"b[cfbde] we Awt Aw® =0 by
virtue of the Jacobi identity (5.43).

In general a n-dimensional manifold for which there are n vector fields which are linearly
independent and non zero at each point is parallelisable. Examples are the circle S and
the 3-sphere S3. A Lie group defines a parallelisable manifold since a basis for non zero
vector fields is given by the left invariant fields in (5.32), the group U(1) corresponds to S*
and SU(2) to S3.

5.2 Lie Algebra Definitions

In general a Lie algebra is a vector space g with a commutator [,]: g x g — g satisfying
(5.13), (5.16) and (5.17), or in terms of a basis {1}, satisfying (5.41), with (5.39), and
(5.42) or (5.43). Various crucial definitions, which are often linked to associated definitions
for groups, are given below.

Two Lie algebras g, g’ are isomorphic, g ~ ¢/, if there is a mapping between elements of
the Lie algebras X < X' such that [X,Y] = [X',Y’]. If g = ¢’ the map is an automorphism
of the Lie algebra. For any g automorphisms form a group, the automorphism group of g.

The Lie algebra is abelian, corresponding to an abelian Lie group, if all commutators
are zero, [X,Y] =0 for all X,Y € g.

A subalgebra h C g forms a Lie algebra itself and so is closed under commutation. If
H C G is a Lie group then its Lie algebra b is a subalgebra of g.

An invariant subalgebra or ideal h C g is such that
[X,Y]€h forall Yebh, Xeg. (5.50)
If H is a normal Lie subgroup then its Lie algebra forms an ideal. Note that
i=[g0] ={X,Y]: X,Y €}, (5.51)
forms an ideal i C g, since [Z, [X,Y]] €ifor all Z € g. i is called the derived algebra.
The centre of a Lie algebra g, 3(g) = {Y : [X,Y] =0 for all X € g}.
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A Lie algebra is simple if it does not contain any invariant subalgebra.
A Lie algebra is semi-simple if it does not contain any invariant abelian subalgebra.

Using the notation in (5.51) and we may define in a similar fashion a sequence of
successive invariant derived subalgebras g™, n = 1,2, ..., forming the derived series by

gV =[g™, 0], g =g4]. (5.52)

A Lie algebra g is solvable if gt = 0 for some n, and so g(™ is abelian and the derived
series terminates.

Solvable and semi-simple Lie algebras are clearly mutually exclusive. Lie algebras may
be neither solvable nor semi-simple but in general they may be decomposed in terms of such
Lie algebras.

The direct sum of two Lie algebras, g = g1 ® g2 = {X1 + Xo : X3 € g1, X2 € go}, with
the commutator
(X1 + X2, Y1 + Y| = [ Xy, Xo] + [V1, Ya. (5.53)

It is easy to see that the direct sum g contains g; and go as invariant subalgebras so that g
is not simple. The Lie algebra for the direct product of two Lie groups G = G1 ® G5 is the
direct sum g1 @ go.

If a Lie algebra g can be defined to act linearly on a Lie algebra b such that

Y - v, oY — @YX =yX'X forall Yep, X, X' eg, (5.54)

then we may define the semi-direct sum Lie algebra g & h = {X +Y : X € h,Y € h}
with commutators [X + Y, X' +Y'] = [X, X'| + Y'X =YX 4+ [Y,Y"]. b forms an invariant
subalgebra of g h. The semi-direct sum of Lie algebras arises from the semi-direct product
of Lie groups.

5.3 Matrix Lie Algebras and Matrix Lie Groups

The definition of the Lie algebra is more straightforward for matrix Lie groups. For a matrix
group there are matrices D(a), depending on the parameters a”, realising the basic group
multiplication rule (5.2),

D(a)D(b) = D(c). (5.55)

For group elements close to the identity with infinitesimal parameters 6% we can now write
D(0) =1+ 6%,, (5.56)
which defins a set of matrices {t,} forming the generators for this matrix group. Writing

0

D(b+db) = D(b) +dv" 7-D(b), (5.57)
then (5.26) becomes
do” 327~D<b) =0T, D(b) = D(b)0, , (5.58)
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using (5.27) along with (5.32). Clearly
T,D(b) = D(b)t,, (5.59)
and it then follows from (5.41) that
[ta, ts] = faptc- (5.60)

The matrix generators {¢,} hence obey the same Lie algebra commutation relations as {7},
and may be used to directly define the Lie algebra instead of the more abstract treatment
in terms of vector fields.

5.3.1 SU(2) Example

As a particular illustration we revisit SU(2) and following (5.8) and (5.10) write

A(w)=upl+iu-o up =V 1—u?. (5.61)

This parameterisation is valid for uy > 0. With, for infinitesimal 8, A(0) =1+ i0 - o we
get, using the standard results (2.12) to simplify products of Pauli matrices,

A(u+du) = A(w)A@)=up—u-0+i(u+uyb—ux0) o, (5.62)
and hence
du=agf —ux@, or du;=0ju;(u), pj(u)=1updji+ ugejp- (5.63)
The vector fields forming a basis for the Lie algebra su(2) are then
Tj(u) _uji(u)(‘)aui = T=uVy+uxVy,. (5.64)
Since
TA(u) = A(u)io, (5.65)
and [0y, 0;] = 2ig;j;0%, the Lie bracket must be
T3, T5] = —2¢€ij1 Ty, - (5.66)

5.3.2 Upper Triangular Matrices

The upper triangular and the strictly upper triangular matrices

r T x T 0 =z =x x
0 = « x 0 0 =z x

b= 0 0 =z x , n= 0 0 0 x , (5.67)
00 0 .. =z 0O 0 o0 .. O

form Lie algebras with the commutator defined by usual matrix multiplication. It is easy
to see that
n=1[b,b], (5.68)

and that the Lie algebras b and hence also n are solvable.
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5.3.3 Representations and Lie Algebras

There is an intimate relation between representations of Lie algebras and Lie Groups. Just
as described for groups in 1.4, a representation of a Lie algebra g is of course such that for
any X € g there are corresponding matrices D(X) such that D([X,Y]) = [D(X), D(Y)],
where [D(X), D(Y)] is the matrix commutator. For convenience we may take D(T;,) = t,
where {t,} form a basis of matrices in the representation satisfying (5.60), following from
(5.41). As for groups an irreducible representation of the Lie algebra is when there are no
invariant subspaces of the corresponding representation space ¥V under the action of all the
Lie algebra generators on V. Just as for groups there is always a trivial representation by
taking D(X) = 0.

The generators may be defined in terms of the representation matrices for group elements
which are close to the identity,

D(g(0)) =1+ 6%,+0(6%),  D(g(0)™' =1-6%,+0(6?). (5.69)
For unitary representations, as in (1.34), the matrix generators are then anti-hermitian,
th = —t,. (5.70)

If the representation matrices have unit determinant, since det(/+eX) = 1+etr(X)+O0(e?),
we must also have

tr(ty) = 0. (5.71)

In a physics context it is commonplace to redefine the matrix generators so that t, = —it,
so that, instead of (5.70), the generators #, are hermitian and satisfy the commutation
relations [tq, ] = i fpte.

Two representations of a Lie algebra {t,;} and {t,} are equivalent if, for some non
singular .S,
th, = St,S7L. (5.72)

For both representations to be unitary then S must be unitary. If the representation is
irreducible then, by applying Schur’s lemma,

ta=St,S™! or [S;ty] =0 = SolI. (5.73)

The complex conjugate of a representation is also a representation, in general it is
inequivalent. If it is equivalent then, for some C,

te = Ct, 071, (5.74)
or for a unitary representation, assuming (5.70),
Ct, 07t =t . (5.75)

By considering the transpose we get C~'7C't, C~'CT = t, so that for an irreducible rep-
resentation

Ccto=c1 = C=cCl = c=+1. (5.76)
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If C = CT then, by a transformation C — STCS together with t, — S™'t,9, we can take
C = I and the representation is real. If C = —C7T the representation is pseudo-real. For
det C' # 0 the representation must be even dimensional, 2n. By a transformation we may
take C' = J, J? = —1I, where J is defined in (1.54). The representation matrices then satisfy
D(g(0))t = —JD(g(#))J, which is just as in (1.64). This is sufficient to ensure that the
pseudo-real representation formed by {D(g(6))} can be expressed in terms of n x n matrices
of quaternions, and so such representations are also referred to as quaternionic.

The SO(3) spinor representation described in section 2.10 is pseudo-real since
CoCl=—0" for C=ios=(2}), (5.77)
which is equivalent to (2.165).

A corollary of (5.75) is that,for real or pseudo-real representations,
tr(ta, - - -ta,)) =0 for n odd. (5.78)

For n = 3 this has important consequences in the discussion of anomalies in quantum field
theories.

5.4 Relation of Lie Algebras to Lie Groups

The Lie algebra of a Lie group is determined by those group elements close to the identity.
Nevertheless the Lie group can be reconstructed from the Lie algebra subject to various
topological caveats. Firstly the group must be connected, for elements g € G there is a
continuous path ¢(s) with g(0) = e and g(1) = g. Thus we must exclude reflections so
that SO(3) and SO(3, 1) are the connected groups corresponding to rotations and Lorentz
transformations. Secondly for a Lie group G having a centre 3(G) which is a discrete
abelian group, then for any subgroup H3(G) C 3(G), where H3(G) = {h} with gh = hg
for all g € G, the group G/H3(G), defined by g ~ gh, is also a Lie group with the same
Lie algebra as G. As an example SO(3) and SU(2) have the the same Lie algebra although
SO(3) ~ SU(2)/Zy where Zo = 3(SU(2)).

5.4.1 One-Parameter Subgroups

For any element 6%T, € g there is a one-parameter subgroup of the associated Lie Group G
corresponding to a path in Mg whose tangent at the identity is 8*T,. With coordinates a"
the path is defined by aj, with s € R, where

d r a, T ro__ d __pa
& ag = 0 Ha (as) 9 ag = 07 or ds g(as) =0 Ta(as) g(as) . (579)

To verify that this forms a subgroup consider g(c) = g(at)g(as) where from (5.2)

" =" (ay,as) . (5.80)
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Using (5.79) with (5.31) we get

8 T a u T T T T
5:C = 0% 110" (as) Mo’ (as) " (¢) = 60" (c) c ‘s:O =ay . (5.81)

The equation is then identical with (5.79), save for the initial condition at s = 0, and the
solution then becomes

=agy, = gla)glas) = glasse). (5.82)
Since
glas)™ = glay), (5.83)

then {g(as)} forms an abelian subgroup of G depending on the parameter s. We may then
define an exponential map

exp:g— G, (5.84)
by
g(as) = exp(s0°T,) . (5.85)
For any representation we have
D(g(as)) = e*""'a, (5.86)

where t, are the matrix generators and the matrix exponential may be defined as an infinite
power series, satisfying of course e!¥e5X = ¢(5T)X for any matrix X.

5.4.2 Baker Cambell Hausdorff Formula

In order to complete the construction of the Lie group G from the Lie algebra g it is
necessary to show how the group multiplication rules for elements belonging to different
one-parameter groups may be determined, i.e for any X,Y € g we require

exp(tX) exp(tY) = exp(Z(t)), Z(t)eg. (5.87)

The Baker Cambell Hausdorff'> formula gives an infinite series for Z(t) in powers of ¢t whose
first terms are of the form

Z(t) =tX +Y)+ 32X, Y]+ L2 ([X, [X, Y]] - [V, [X,Y]]) + O(¢"), (5.88)

where the higher order terms involve further nested commutators of X and Y and so are
determined by the Lie algebra g. For an abelian group we just have Z(t) = (X +Y).
The higher order terms do not have a unique form since they can be rearranged using the
Jacobi identity. Needless to say the general expression is virtually never a practical method
of calculating group products, for once existence is more interesting than the final explicit
formula.

15Henry Frederick Baker, 1866-1956, British, senior wrangler 1887. John Edward Cambell, 1862-1924,
Irish. Felix Hausdorff, 1868-1942, German.
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We discuss here the corresponding matrix identity rather than consider the result for
an abstract Lie algebra. It is necessary in the derivation to show how matrix exponentials
can be differentiated so we first consider the matrix expression

fs) = esIH0D e=7 (5.89)
and then d
/)= G057 6757 = 257 ¢4 + O(527). (5.90)
s
Solving this equation
1
F) =T+ / ds €257 =% 4+ 0(522), (5.91)
0
so that .
27 _ % — / ds €257 197 1 0(627). (5.92)
0
Hence for any Z(t) we have the result for the derivative of its exponential
4 e?) = /lds es2) gZ(t) =92 (5.93)
dt 0 dt
If, instead of (5.87), we suppose,
X et = %) (5.94)
then
% (etX etY) et o tX _ x4 Xy tX
_4d eZ) ¢=2(1) — /lds es2) 4 Z(t) e 4@ (5.95)
dt 0 dt

With the initial condition Z(0) = 0 this equation then allows Z(t) to be determined. To
proceed further, using the formula for the exponential expansion

e*Be™ =B+ [A B]+ LA [A,B]+..., (5.96)

(5.95) can be rewritten as an expansion in multiple commutators

X 4 ot Xy ot — %z(t) + ; (nil)' (Z(t),...[2(1), % zZw)]...], (5.97)

n
which may be solved iteratively by writing Z(t) = Y 7, Z,t™.

The results may be made somewhat more explicit if we adopt the notation

f(xy = 3 fo [X,.. [X, Y] ... for  f(x)= 3 frz™, (5.98)
2 B >

n
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so that (5.96) becomes e Be™4 = ¢A™ B. Then, since folds e’ = (e* —1)/z, (5.95) can be
written as

d ad
320 = F(EZO™) (X + Xy (5.99)
for, using the standard series expansion of In(1 + z),
1 — (—1)"
flz) = 22 Z (z—1)". (5.100)

Since

2N = Z(1) [T g 2() = XY [T o= tY o~tX — etXadetyadU7 (5.101)

we may replace e? O, etX*etY™ o the right hand side of (5.99). With some intricate
combinatorics (5.99) may then be expanded as a power series in ¢ which on integration gives
a series expansion for Z(t) (a formula can be found on Wikipedia).

A simple corollary of these results is

et X e tY X Y _ X Y]FO() (5.102)

so this combination of group elements isolates the commutator [X,Y] as t — 0.

5.5 Simply Connected Lie Groups and Covering Groups

For a connected topological manifold M then for any two points x1,22 € M there are
continuous paths py, .z, linking x; and x2 defined by functions pz, —z,(s),0 < s < 1,
where Py, .2, (0) = x1, Pz, —a,(1) = z2. For three points z1, 2, x3 a composition rule for
paths linking x1,xo and s, z3 is given by

,_n w\»—t

5= (5.103)
> .

I/\ |/\

Pay—ay(25),
s O e )(8) =
(Pay—as © Pey—s ) (5) {pm_)xg(%_l)’

= O

For any p,, ., the corresponding inverse, and also the trivial identity path, are defined by

pa_:21—>zl (S) = p:hﬂxz(l - S) ) p:cd—m(s) = . (5'104)

The set of paths give topological information about M by restricting to equivalence, or
homotopy, classes [Py, —uz,| = {P1—zs : Piei—zs ~ Pzy—as |, Where the homotopy equivalence
relation requires that p/y, —.,(s) can be continuously transformed to ps;,—.4,(s). These ho-
motopy classes inherit the composition rule [py,—z,] © [Pry—zs] = [Pz1—azs © Pzy—zs). The
fundamental group for M is defined in terms of homotopy classes of closed paths starting
and ending at an arbitrary point z € M,

(M) = {[pre]} (5.105)

This defines a group using the composition rule for group multiplication and for the identity
e = [pid ] and for the inverse [p, .| ™! = [p;L,]. For M connected 71 (M) is independent of

the point « chosen in (5.105). M is simply connectedif w1 (M) is trivial, so that p, ., ~ pld
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for all closed paths. If w1 (M) is non trivial then M is multiply connected, if dim 7 (M) =n
there are n homotopy classes [p;,—z,| for any z1, zs.

For Lie groups we can then define m1(G) = m(Mg). In many examples this is non
trivial. For the rotation group SO(3), as described earlier, Mgo(3) =~ S3 /75 where antipodal
points, at the end of diameters, are identified. Alternatively, by virtue of (2.7), Mgos)
may be identified with a ball of radius 7 in three dimensions with again antipodal points on
the boundary S? identified. There are then closed paths, starting and finishing at the same
point, which involve a jump between two antipodal points on S3, or the surface of the ball,
and which therefore cannot be contracted to the trivial constant path. For two antipodal
jumps then by smoothly moving the corresponding diameters to coincide the closed path
can be contracted to the trivial path. Hence

m(SO(3)) ~ Zj . (5.106)

As another example we may consider the group U(1), as in (1.52), where it is clear that
My =~ S1, the umit circle. For S! there are paths which wind round the circle n-times
which are homotopically distinct for different n so that homotopy classes belonging to
m1(U(1)) are labelled by integers n. Under composition it is straightforward to see that the
winding number is additive so that

m(U(1)) ~Z, (5.107)

which is an infinite discrete group in this case.

5.5.1 Covering Group

For a non simply connected Lie group G there is an associated simply connected Lie group
G, the covering group, with the same Lie algebra since G and G are identical near the
identity. Assuming 71(G) has n elements then for any g € G we associate paths p; 4
where

Die—g(s) = gi(s), ¢i(0)=e, g¢i(1)=yg, i=0,....,n—1, (5.108)

corresponding to the n homotopically distinct paths from the identity e to any g. The
elements of m;(G) can be identified with [p; .—..]. We then define G such that the group
elements are

9i = (9, [Pie—qg)) €G  forall geG,i=0,...,n—1, (5.109)
with a corresponding group product

91i 925 = gk for g =g192, [Pke—gigs) = [Pie—gr © G1Pje—gs) ; (5.110)

using the path composition as in (5.103) and noting that gip;ec—g4, defines a path from g;
to g = g1g2. For the inverse and identity elements we have, with the definitions in (5.104),

giil = (gila [gilpijglﬂe]) ) €0 = (6, [p(),a—w]) y  POe—e = pieCLe : (5.111)
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These definitions satisfy the group properties although associativity requires some care. G
contains the normal subgroup given by

{e;:i=0,...,n—1} 2m(G), ei = (& [Pie—el) - (5.112)

Any discrete normal subgroup H of a connected Lie group G must be moreover a
subgroup of the centre 3(G), since if h € H then ghg™! € H for any g € G, by the
definition of a normal subgroup. Since we may ¢ vary continuously over all G, if G is a
connected Lie group, and since H is discrete we must then have ghg~! = h for all g, which
is sufficient to ensure that h € 3(G).

The construction described above then ensures that the covering group G is simply
connected and we have therefore demonstrated that

G ~G/m(Q), m(G) C 3(G). (5.113)

As an application we consider the examples of SO(3) and U(1). For SO(3) we consider
rotation matrices R(6,n) as in (2.6) but allow the rotation angle range to be extended to
0 — 2m. Hence, instead of (2.7), we have

neS?, 0<60<2r, (0,n) ~ (27 — 6, —n). (5.114)

There are two homotopically inequivalent paths linking the identity to R(6,n), 0 < 6 < 7,
which may be defined, with the conventions in (5.114), by

Po,1—R(6,n) (3) = R(Saa n) y  P1,1-R(8,n) (S) = R(S(Qﬂ- - 9)7 _n) s 0<s<1, (5115)

since py 7 Rr(g,n) involves a jump between antipodal points. The construction of the covering
group then defines group elements R(6,n);, for ¢ = 0,1. For rotations about the same axis
the group product rule then requires

RO +6".1)i+jmod 2, 0<0+6 <m,

0<0,0 <m. (5.116)
R(0+0/7n)i+j+1mod27 T < 6+ 0 <27,

R(H,n)l R(@',n)j = {

It is straightforward to see that this is isomorphic to SU(2), by taking R(6,n)y — A(6,n),
R(6,n); — —A(f,n), and hence SO(3) ~ SU(2). For U(1) with group elements as in (1.52)
we may define

Prieio(s) = e0T™ - 0<s<1, nez, (5.117)

which are paths with winding number n. Writing the elements of the covering group U(1)
as gn (6“9) we have the product rule

i0 0’ In+n’ (ei(9+9l)) s 0< 0+ o’ < 27T> /
, — o 0<6,0 <2r. (5.118
o (e ) o (e ) {gn+n’+1 (61(9—’—9 )) ’ 2m < 0 + o' < 47Ta " ( )

It is straightforward to see that effectively the group action is extended to all real 0,6’ so
that U(1) ~ R.
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5.5.2 Projective Representations

For a non simply connected Lie group G then in general representations of the covering group
G generate projective representations of G. Suppose {D(g;)} are representation matrices
for G, where D(g1;) D(g2j) = D(gx) for g1, g2;, gx € G satisfying the group multiplication
rule in (5.110). To restrict the representation to G it is necessary to restrict to a particular
path, say i, since there is then a one to one correspondence g; — g € GG. Then, assuming

g1i 92i = g5 for some j,
D(g1i) D(92:) = D(g5) = D(g;9i") D(gi) = D(ex) D(gi), (5.119)
where, by virtue of (5.112) and (5.113),
9;gi ' = e € 3(G) for some k. (5.120)

Since ey belongs to the centre, D(e;) must commute with D(g;) for any g; € G and so,
for an irreducible representation must, by Schur’s lemma, be proportional to the identity.
Hence, for a unitary representation,

D(eg) = eI, (5.121)

where {€ : k =0,...,n— 1} form a one dimensional representation of 71(G). Combining
(5.119) and (5.121) illustrates that {D(g;)}, for i fixed, provide a projective representation
of G as in (1.71).

For SO(3) we have just e/ = +1. For U(1) then there are one-dimensional projective
representations given by e'®?, for any real o, where we restrict 0 < § < 27 which corresponds
to a particular choice of path in the covering group. Then the multiplication rules become

o) jiott _ { eio(6+0") 0<0+6 <2r, (5.122)

e2mior gia(6+0'=2m)  9p < G4 ¢ < 4.

5.6 Lie Algebra and Projective Representations

The possibility of different Lie groups for the same Lie algebra, as has been just be shown,
can lead to projective representations with discrete phase factors. There are also cases when
the phase factors vary continuously which can be discussed directly using the Lie algebra.
We wish to analyse then possible solutions of the consistency conditions (1.72) modulo
trivial solutions of the form (1.73) and show how this may lead to a modified Lie algebra.

For simplicity we write the phase factors v which may appear in a projective represen-
tation of a Lie group G, as in (1.71), directly as functions on Mg x M so that, in terms
of the group parameters in (5.1), we take v(g(a), g(b)) = v(a,b). The consistency condition
(1.72) is then analysed with g; — g(a), g; — g(b), gr — g(8) with 6 infinitesimal and, with
the same notation as in (5.26) and (5.28), this becomes

v(¢,0) + v(a,b) = v(a, b+ db) +v(b,0) . (5.123)

77



Defining

G,
Ya(b) = 5o 1(b,0) o’ (5.124)

and with (5.27) and the definition (5.32) then (5.123) becomes
Ta(b) v(a, ) = va(c) — 7a(b). (5.125)
This differential equation for v(a,b) has integrability conditions obtained by considering
[Ta(b), To(b)] v(a,b) = fwTc(b) v(a, b) (5.126)

which applied to (5.125) and using T, (b) = T (c) from (5.32) leads to a separation of the
dependence on b and ¢ so each part must be constant. This gives

Ta(b) w(b) = Ty (D) va(b) — fab ve(b) = hab = —hta (5.127)

with hgp a constant. Applying 7.(b) and antisymmetrising the indices a,b,c gives, with
(5.41),

0=Tehap+Tp heat+To hpe = fdab(Td’Vc_ c'yd)"i_fdbc(Td'}/a_ a'7d)+fdca(Td'7b_Tb'7d) ’ (5'128)
and hence, with (5.127) and (5.43), there is then a constraint on hgy,

Foab hac + [ haa + fahay = 0. (5.129)

As was discussed in 1.6 there are trivial solutions of the consistency conditions which are
given by (1.73), and which, in the context of the Lie group considered here, are equivalent
to taking y(a, b) = a(c) —a(a) — a(b) for a any function on M. From (5.26) we then have
~v(b,0) = a(b+ db) — a(b) — a(#) so that (5.124) gives

Ya(b) =Ta(b) a(b) —cas  Ca= (;Za a(0) L (5.130)

and then substituting in (5.127)
hap = [ap cc- (5.131)

It is easy to verify that (5.130) and (5.131) satisfy (5.127) and (5.129)16.

If there are unitary operators U(a), corresponding to g(a) € G, realising the Lie group
G as a symmetry group in quantum mechanics then (1.71) requires

Ub)U(0) = 7O U (b + db), (5.132)

for infinitesimal 6%. Assuming )
Ud) =1—1i0"T,, (5.133)

1% Alternatively, using the left invariant one forms in (5.48) and defining h = hap w® A w®, then (5.129)
is equivalent, by virtue of (5.49), to dh = 0, so that h is closed, while the trivial solution (5.131) may be
identified with h = —de¢, corresponding to h being exact, for ¢ = cq,w®. Thus projective representations
depend on the cohomology classes of closed, modulo exact, two forms on Mg.
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for hermitian operators T, then, since U(b+ db) = U(b) 4 0T, (b)U (b), we have
T,(0)U(b) = —iU(b)(To + 7a (D)) - (5.134)

By considering [T, T,]U (b) and using (5.127) then this requires that the hermitian operators
{T,} satisfy a modified Lie algebra

(T, Ty) =i f Te —ihap 1. (5.135)

The additional term involving hgy, is a central extension of the Lie algebra, it is the coefficient
of the identity operator which commutes with all elements in the Lie algebra. A central
extension, if present, is allowed by virtue of the freedom up to complex phases in quantum
mechanics and they often play a crucial role. The consistency condition (5.129) is necessary
for {T,} to satisfy the Jacobi identity, if (5.131) holds then the central extension may be
removed by the redefinition T w— T wtcgl.

As shown subsequently non trivial central extensions are not present for semi-simple Lie
algebras, it necessary for there to be an abelian subalgebra. A simple example arises for
the Lie algebra is0(2), given in (4.139), which has a central extension

[Jg, El] = iEQ s [Jg, EQ] = *Z'El 5 [El, EQ] =1cl. (5136)

5.6.1 Galilean Group

As an illustration of the significance of central extensions we consider the Galilean Group.
Acting on space-time coordinated x, ¢ this is defined by the transformations involving rota-
tions, translations and velocity boosts

x' = Rx +a+vt, t'=t+0b, (5.137)

where R is a rotation belonging to SO(3). If we consider a limit of the Poincaré Lie algebra,
with generators J, K, P, H, by letting K — ¢K, H — c¢M +c¢~'H and take the limit ¢ — oo
then the commutation relations from (4.42), (4.43) and (4.107), (4.108) become

(i, J5] = igijiJk [Ji, K| = igij Ky (K, K;] =0, (K, H] = iP;,
K. P = isy; M, [3,M] = [K,M] = [P, M] = [H,M] = 0. (5.138)

When the Lie algebra is calculated just from the transformations in (5.137) the terms
involving M are absent, the terms involving M are a central extension.

If we consider the just the subgroup formed by boosts and spatial translations then
writing the associated unitary operators as

Ulv,a] = e P VK, (5.139)
then a straightforward calculation shows that

UV, a|Ulv,a] = MV 2U[V 4 v,a +a. (5.140)
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For comparison with the preceding general discussion we should take T, — (Vy, Va) and
Tn — (—K,P). From (5.140) then v, — M (0,v) and from (5.127) ha, — M ( _013 155)

For representations of the Galilean group in quantum mechanics the central extension
plays an essential role. Using (5.138)

e VEPHVKE =P Mv,  NVEHNE=H+P v+ iMv? (5.141)

In a similar fashion to the Poincaré group we may define irreducible representations in terms
of a basis for a space V), obtained from a vector |0), such that P|0) = 0, by

p) =eVE0), p=Mv, (5.142)

so that as a consequence of (5.142)

Plp)=plp), Hlp) = (Eo+ £7)Ip). (5.143)

Clearly V) corresponds to states of a nonrelativistic particle of mass M. The representa-
tion can easily be extended to include spin by requiring that |0) belong to an irreducible
representation of the rotation group.

5.7 Integration over a Lie Group, Compactness

For a discrete finite group G = {g;} then an essential consequence of the group axioms is
that, for any function f on G, the sum ), f(g:) = >, f(99:) is invariant for any arbitrary
g € G. This result played a vital role in the proof of results about representations such as
Schur’s lemmas and the equivalence of any representation to a unitary representation. Here
we describe how this may be extended to Lie groups where, since the group elements depend
on continuously varying parameters, the discrete sum is replaced by a correspondingly
invariant integration.

If we consider first the simplest case of U(1), with elements as in (1.52) depending on an
angle 0 then a general function f on U(1) is just a periodic function of 0, f(0+27) = f(0).
Since the product rule for this abelian group is e’ e = ¢/ +0) then, for periodic f,

2 2T
/ do f(@)—/ do f(0' +0). (5.144)
0 0

provides the required invariant integration over U(1). For the covering group R, formed by
real numbers under addition, the integration has to be extended to the whole real line.

For a general Lie group G then, with notation as in (5.1) and (5.2), we require an
integration measure over the associated n-dimensional manifold Mg such that

/ ap(b) f(g(b)) = / ap(d) flg(c) for g(e) = gla)g(d). (5.145)
G G

where dp(b) = d"bp(b). To determine p(b) it suffices just to calculate the Jacobian J for
the change of variables b — ¢(b), with fixed a, giving for the associated change of the
n-dimensional integration volume elements

(5.146)

ac”
d"c = |J|d"b J = det
¢=1J1d"%, ¢ [81)5]’
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and then require, to satisfy (5.145),

dp(b) =dp(c) = p(b) =1[J]p(c). (5.147)
For a Lie group the fundamental result (5.31), with (5.30), ensures that
_ det [1()]

J = det [A(b)] det [u(c)] (5.148)

det [u(d)]

Comparing (5.146) and (5.148) with (5.147) show that the invariant integration measure
over a general Lie group G is obtained by taking

__ ¢
‘ det [u(b)] ‘

for some convenient constant C. The normalisation of the measure is dictated by the form
near the identity since for b ~ 0 then dp(b) ~ C d"b.

dp(b) dmb. (5.149)

A Lie group G is compact if the group volume is finite,
/dp(b) — |G| < o0, (5.150)
G

otherwise it is non compact. By rescaling p(b) we may take |G| = 1. For a compact Lie group
many of the essential results for finite groups remain valid, in particular all representations
are equivalent to unitary representations, and correspondingly the matrices representing the
Lie algebra can be chosen as anti-hermitian or hermitian, according to convention. Amongst
matrix groups SU(n), SO(n) are compact while SU(n,m), SO(n,m), for n,m > 0, are non
compact.

5.7.1 SU(2) Example

For SU(2) with the parameterisation in (5.61) the corresponding 3 x 3 matrix [p1;;(u)] was
computed in (5.63). It is not difficult to see that the eigenvalues are ug, up £ 7|u| so that in
this case, since ug® + u? =1,

det[uji(u)] =1uQ - (5.151)

Hence (5.149) requires

dp(u) = ——

= ’d3u, ~1<uyg<1, |u<1. (5.152)
uo

where range of ug,u is determined in order to cover SU(2) matrices in (5.8). For the
parameterisation in terms of #,n, n? = 1, as given by (2.28)

up=cosif, u=-—sinifn, d®u = [u|*dJu| d®n, (5.153)

so that
dp(9,n) = Lsin®30d0d®n,  0<6< 27, (5.154)
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Since [o,d?n = 47 the group volume is easily found
S

/ dp(6,n) = 272, (5.155)
SU(2)

An alternative common parameterisation for SU(2) in terms of Euler angles ¢, 6,1 is
obtained by expressing a general SU(2) matrix in the form

A= 12973713002 —i3v0s (< p<or 0<O<m, 0<1<dnr, (5.156)

where the ranges are dictated by the need to cover all SU(2) matrices. In terms of ug, u as
in (5.8),

uy = COS%G cos%((ﬁ—i—?/)), u;g:—cosée sin%((b—i—i/)),

uy = sin 36 sin 3(¢ — v), up =sin 16 cos (¢ — ). (5.157)

Using duj Adug = —% sinf@df Ad(¢ —1) and dug Adug Adus = % sin @ ug df A d¢ A dvy then

dp(¢,0,1) = £ sinfdf dedip. (5.158)

For SO(3), since SU(2) is a double cover, the group volume is halved. In terms of the
parameterisation (6,n) used in (5.154) we should take 0 < # < 7 or in terms of the Euler
angles instead of (5.156) 0 < ¢ < 2.

For compact Lie groups the orthogonality relations for representations (1.39) or charac-
ters (1.42) remain valid if the summation is replaced by invariant integration over the group
and |G| by the group volume as in (5.150). For SU(2) the characters are given in (2.81)
and using (5.154) and integrating over n € S? we then obtain

2

This may be easily verified directly using the explicit formula for y; in (2.81). For SO(3),
when j,j’ are integral, the integration range may be reduced to [0, 7] with the coefficient
on the right hand side halved.

5.7.2 Non Compact SI/(2,R) Example

As an illustration of a non compact Lie group, we consider Si(2,R) consisting of real 2 x 2
matrices with determinant 1. With the Pauli matrices in (2.11) a general real 2 x 2 matrix
may be expressed as

A =vy+wvi01 + v9i09 + v303, (5.160)

where, for A € SI(2,R), vy, v are real and we must further impose

detA=vd +v8 —vi—vi=1. (5.161)
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If we choose v = (v1,v2,v3) as independent parameters, so that we may write A(v), then
for a infinitesimal 8 = (61, 02, 03) under matrix multiplication

A(v) A(0) = A(v + dv), (5.162)
where, using the multiplication rules (2.12),

Vo V3 ()
(dvl dwvs dvg):(c91 0 93) vg vy —v1 | . (5.163)
—V2 —V1 Vo

This defines the matrix p(v), as in (5.27), for SI(2,R) with the parameter choice in (5.160).
It is easy to calculate, with (5.161),

det u(v) = vo, (5.164)

so that the invariant integration measure becomes

1
dp(v) = ol d3v. (5.165)

Unlike the case for SU(2) the parameters v have an infinite range so that the group volume
diverges.

For an alternative parameterisation we may take

vg = cosha cos 3, vo = cosha sin3, vy =sinha cosvy, v3 =sinha sin-y,
a>0, 0<B,y<2m. (5.166)

In this case the SI(2,R) integration measure becomes
dp(a, B,7) = %sinh 2adadfdy, (5.167)

which clearly demonstrates the diverging form of the « integration. For 3, = 0 the SI(2,R)
matrix given by (5.166) reduces to one for SO(1,1) as in (1.59).

The group SI(2,R) is related to a pseudo-orthogonal group in a similar fashion to SU(2)
and SO(3). For a basis of real traceless 2 x 2 matrices

o = (01,i09,03), (5.168)
then we may define, for arbitrary real 3 vectors x, a linear transformation x — x’ by
6-x'=A6-xA"t,  AeSI2R), (5.169)
such that the quadratic form
deté -x =z + 2 — 2, (5.170)

is invariant. This then demonstrates that SO(2,1) ~ SI1(2,R)/Z,.
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Additionally S1(2,R) ~ SU(1,1). For any B € SU(1,1) we must have
BosBt = o3, det B=1. (5.171)

Writing
B = wy + w01 + weo9 — w3 io3, (5.172)

then for wgy, w real o3BT = B~103 so long as
det B=wi +wsd —wi —wf =1. (5.173)

Hence for any A(v) € SI(2,R) it is clear that ei%”‘”A(v)e_iiml = B(w) € SU(1,1), with
w = (v1,vs,v2), showing the isomorphism between these two non compact Lie groups.

5.8 Adjoint Representation and its Corollaries

A Lie algebra g is just a vector space with also a bilinear commutator, [, ] : gxg — g, subject
only to the requirement that the commutator is antisymmetric and satisfies the Jacobi
identity. The vector space defines the representation space for the adjoint representation
which plays an absolutely fundamental role in the analysis of Lie algebras.

For any X,Y € g then
Y~ [X,Y]= Xy (5.174)

defines the linear mapX?d : g — g. There is also a corresponding adjoint representation for
the associated Lie group G. For any X € g the associated one parameter group is given by
exp(sX) € G and then the adjoint representation D! is defined by

ad . sXxad N e i
Y—>exp(x) D™ (exp(sX))Y =e Y_nz—o”! (X,...[X.Y]...], (5.175)

with similar notation to (5.98). To verify that (5.174) provides a representation of the Lie
algebra the Jacobi identity is essential since from

zMxy = (7 [X,Y]], (5.176)
we obtain for the adjoint commutator, using (5.17),
(224, X" Y = [Z,[X,Y]] - [X,[2,Y]] = [[2.X],Y] = [Z,Y]"Y, (5.177)

and hence in general
(224, x*] = [z, Y] (5.178)

Explicit adjoint representation matrices are obtained by choosing a basis for g, {7} so
that for any Y € g then Y = T,Y“* and (5.174) becomes

Xy =T, (X2, v, (5.179)
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For the generators T, the corresponding adjoint representation matrices are then given by
[0, Ty) = T.(T2)% = (T2% = fu, (5.180)

using (5.41). The commutator
(T2, 7] = fu T2, (5.181)

. . . . . ad
is directly equivalent to (5.42). The group representation matrices D (exp X) = e,

with X2 = T2 X% are then obtained using the matrix exponential. Close to the identity,
in accord with (5.69),
D*(exp X) = T+ X* 4+ O(X?). (5.182)

If the Lie algebra is abelian then clearly X2 = 0 for all X so the adjoint representation
is trivial.

For su(2)
(T3, Tj] = ieiji T, = (T = =i , (5.183)

where T?¢ are three 3 x 3 hermitian matrices. If n is a unit vector (n- T2 = —nnT
from which we may deduce that n - T2 has eigenvalues 41,0 so that this is the spin 1
representation. For the the Lie algebra iso(2), as given in (4.139), we have

00 0 001 0
Epd=ilo 0 —-1], Efd=il0 0 0], Jd =41
00 0 00 0 0

5.8.1 Killing Form

The Killing'™ form, although apparently due to Cartan, provides a natural symmetric bi-
linear form, analogous to a metric, for the Lie algebra g. It is defined using the trace, over
the vector space g, of the adjoint representation matrices by

KX, Y) =tr(X*y*)  forall XY eg, (5.185)
or in terms of a basis as in (5.180)
Kab = K(Ta, Ty) = faa [%e (5.186)
so that £(X,Y) = ke XY?. Clearly it is symmetric ke = Kpq.
The importance of the Killing form arises from the crucial invariance condition
k([Z,X],Y)+r(X,[Z,Y]) =0. (5.187)
The verification of this is simple since, from (5.178),

#((Z,X],Y) = tr([Z, X]*Y?) = tr([27, x4 vad) | (5.188)

1"Wilhelm Karl Joseph Killing, 1847-1923, German.
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and then (5.187) follows from tr([Z?d, X?*d]y?2d) 4 ¢r(X2d[Zad yad]) = 0, using cyclic
symmetry of the matrix trace. The result (5.187) also shows that the Killing form is
invariant under the action of the corresponding Lie group G since

k(7 X, 7YY = k(X,Y), (5.189)
which follows from (5.175) and differentiating with respect to s and then using (5.187).

Alternatively (5.187) may be expressed in terms of components using

K([Te, Ta), Th) = foak(Ta, Th) = [ Kab = fean s (5.190)
in a form expressing x4 as an invariant tensor for the adjoint representation
Kb [a + Kad f% = 0 < Jeab + feba = 0. (5.191)
Since, from (5.39), feap + feba = O this implies
Jabe = flabe] - (5.192)

If the Lie algebra g contains an invariant subalgebra b then in an appropriate basis we
may write

T.=(G.T), Tieh [T =T, [0.T) =T, (5193
so that the Killing form restricted to b is just
kij = fh o = trg(TPIT) (5.194)
The crucial property of the Killing form is the invariance condition (5.187). If g, also
defines an invariant bilinear form on the Lie algebra, as in (5.187), so that
9av([Z, X1°Y" + X[2,Y]") = 0, (5.195)

then, for any solution \; of det[k. — Agap] = 0, b = {X; : (Kap — Nigap) XP = 0} forms, by
virtue of the invariance condition (5.195), an invariant subalgebra h; C g. Restricted to b;
the Killing form kg, and g4, are proportional. For a simple Lie algebra, when there are no
invariant subalgebras, the Killing form is essentially unique.

For a compact group the adjoint representation D may be chosen to be unitary so
that in (5.182) the adjoint Lie algebra generators are anti-hermitian, as in (5.70),

xadt — _ xad (5.196)
In this case
(X, X)<0, kX, X)=0 & X*=0. (5.197)
For su(2) using (5.183)
kij = tr(TPY T = ey e = 2045 - (5.198)

However for iso(2) then, if T, = (E1, E2, J3), a = 1,2,3, it is easy to see from (5.184)

a
0

[Kap) =2 (0 (5.199)
0

S O O
= o O
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5.8.2 Conditions for Non Degenerate Killing Form

For the Killing form to play the role of a metric on the Lie algebra then it should be non-
degenerate, which requires that if (Y, X) = 0 for all Y € g then X = 0 or more simply
det[kap] # 0 so that kapY? = 0 has no non trivial solution. An essential theorem due to
Cartan gives the necessary and sufficient conditions for this to be true. Using the definition
of a semi-simple Lie algebra given in 5.2 we have;

Theorem The Killing form is non-degenerate if and only if the Lie algebra is semi-simple.

To demonstrate that if the Lie algebra is not semi-simple the Killing form is degenerate
is straightforward. Assume there is an invariant abelian subalgebra h with a basis {T;} so
that

T,=(T,T,) = [L.T)=0, [T.T)=fuly. (5.200)

Then from (5.186)
Rai = fcad fdic = fraj fjir = 0» since frsj = frkj = Oa (5201)

which is equivalent to k(Y, X) =0 for X € h and all Y € g. The converse is less trivial. For
a Lie algebra g, if det[k,p] = 0 then h = {X : k(Y, X) = 0,for all Y € g} forms a non trivial
invariant subalgebra, since k(Y,[Z,X]) = —k([Z,Y],X) = 0, for any Z,Y € g, X € b.
Thus g is not simple. The proof that g is not semi-simple then consists in showing that b
is solvable, so that, with the definition in (5.52), h(™®) is abelian for some n. The alternative
would require b(") = b("+1), for some n, but this is incompatible with x(X,Y) = 0 for all
X, Y eb.

The results (5.198) and (5.199) illustrate that su(2) is semi-simple, whereas iso(2) is
not, it contains an invariant abelian subalgebra.

For a compact Lie group G the result that a degenerate Killing form for a Lie algebra g
implies the presence of an abelian invariant subalgebra follows directly from (5.197) since
if X2 =0, X commutes with all elements in g. For the compact case the Lie algebra can
be decomposed into a semi-simple part and an abelian part so that the group has the form

G~ Gsemi—simple & U(l) K- Q U(l)/F, (5202)
with a U(1) factor for each independent Lie algebra element with X = 0 and where F is

some finite abelian group belonging to the centre of G.

5.8.3 Decomposition of Semi-simple Lie Algebras

If a semi-simple Lie algebra g contains an invariant subalgebra § then the adjoint represen-
tation is reducible. However it may be decomposed into a direct sum of simple Lie algebras
for each of which the adjoint representation is irreducible. To verify this let

b = {X :k(X,Y)=0,Y €h}. (5.203)
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Then b, is also an invariant subalgebra since, for any X € h, and Z € g, Y € b,
k([Z,X],Y) = —r(X,[Z,Y]) = 0. Furthermore h; Nh = 0 since otherwise, by the def-
inition of h, in (5.203), there would be a X € b, and also X € h so that (X, Z) = 0 for
all Z € g which contradicts the Killing form being non-degenerate. Hence

g=hbab,. (5.204)

This decomposition may be continued to give until there are no remaining invariant spaces

g=a, g simple. (5.205)

(2

For the Lie algebra there is then a basis {T,(!}, such that for each individual i this represents
a basis for g;, a = 1,...dim g;, and with the generators for g;,g;, ¢ # j commuting as in
(5.53) and k(T , T))) = 0, i # j. For any X,Y € g then the Killing form becomes a sum

X=)Xi, Y=Y, KXY)=) trg(XpVP), (5.206)

The corresponding decomposition for the associated Lie group becomes G = ®;G;.

With this decomposition the study of semi-simple Lie algebras is then reduced to just
simple Lie algebras.

5.8.4 Casimir Operators and Central Extensions

For semi-simple Lie algebras we may easily construct a quadratic Casimir operator for any
representation and also show that there are no non trivial central extensions.

The restriction to semi-simple Lie algebras, det[rq] # 0, ensures that the Killing form

K = [ka) has an inverse k=1 = [k%], so that ke kP = 8, and we may then use k% and ki

to raise and lower Lie algebra indices, just as with a metric. The invariance condition (5.191)

becomes k T2+ 7,247k = 0 so that from [T,24, k~'k] = 0 we obtain T2k~ + £~ 1T,24T = 0
or

fbad H'dc + fcad Kbd =0, (5207)

showing that k% is also an invariant tensor. Hence, for any representation of the Lie algebra
in terms of {t,} satisfying (5.60), then

[tcw Kb tbtc] = K" (fdab tgte + fdac tbtd) = (Kvbefdab + /‘idcfeac) tate = 0. (5-208)
In consequence k™ t,ty is a quadratic Casimir operator.

To discuss central extensions we rewrite the fundamental consistency condition (5.129)
in the form

hae fecd = _hde feac — hee feda . (5209)
Then using (5.207)

hae fecd fcbg ﬁgd = _hae fgcd fcbg dee = hae Rdb ’ied = hab s (5210)
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and also, with (5.207) again,
(hde e + Pee [oaa) Fog K97 = (Rae [ [ + hee Foog foad) 9
= hge fac fog K9 = hee [ ug foaa K™ (5.211)
we may obtain from (5.209), re-expressing (5.211) as a matrix trace,
hap = —tr (b [T TRkt = —tr (R T2% 1) fo - (5.212)

Hence hgy, is of the form given in (5.131) which demonstrates that for sem-simple Lie algebras
there are no non trivial central extensions. Central extensions therefore arise only when are
invariant abelian subalgebras.

5.9 Bases for Lie Algebras for Matrix Groups

Here we obtain the Lie algebras g corresponding to the various continuous matrix groups

G described in section 1.5 by considering matrices close to the identity
M=1+X+0(X?), (5.213)

with suitable conditions on X depending on the particular group.

For u(n), X is a complex n x n matrix satisfying X7 = —X and for su(n), also tr(X) = 0.
It is convenient to consider first a basis formed by the n?, n x n, matrices {R';}, where R";
has 1 in the ¢’th row and j’th column and is otherwise zero,

J
00 ... 0 ... 0
. 1|0 1 0 . .
R, = |. ., ig=1,...n, (R')T = RI;. (5.214)
0 -0
00 ... 0 ... 0
These matrices satisfy A ‘ ‘
[R'j, R)] = 8% Ry — 6" R, (5.215)
and A A
tr(R'; R¥)) = 6% 6'). (5.216)

In general X = R';X7; € gl(n) for arbitrary X/, so that {R!;} form a basis for gl(n).
If >, X7; = 0 then X € sl(n) while if (X7;)* = —X?; then X = —XT € u(n). For the
associated adjoint matrices

(X, R'] = X'y RF; — T XF; = (X5 = X6 — XY 6% (5.217)
Hence, for X = Rinji, Y = Rinji,

A(X,Y) = tr (XY ) =2(n 0, X9,V = 30, X7 3. YY) (5.218)
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Restricting to u(n)
KX, X)=-2nY, |X7%)*, XI;=X7;— 157,57, X5, (5.219)

Clearly (X, X) = 0 for X o I reflecting that u(n) contains an invariant abelian subalgebra.
For su(n), when 3", X*; = 0 and hence tr(X) = 0, then x(X, X) = 2ntr(X?) < 0.

For o(n) or so(n) then in (5.213) we must require X7 = —X so that tr(X) = 0. A basis
for n x n antisymmetric matrices is given by the %n(n — 1) matrices {S;; : i < j} where

i J
0 ... o ... 0 ... 0
110 0 1 0
Si=-S:= |: 3 I A R (5.220)
710 -1 0 0
0 0O ... O 0
These satisfy
[Sij, Ski] = 0jk St — ik Sji — 651 Sik + 6t Sjke (5.221)
and
tr(Sij Swt) = 2(6i1 61 — i 651) - (5.222)

For arbitrary X € so(2n) then X = %XijSij, where X;; = —X; is real. From (5.221)
[X, Sz]] = Xy Skj - ij Sk = Xl?;j,ij = Xy 51]' — ij 01 — Xy 6kj + le Oki » (5223)
and hence

R(X,Y) = § X7 Y% = —(n — 2) X355 . (5.224)

The matrices (5.220) are the generators for the vector representation of SO(n) which is of
course real, as described later there are also complex representations involving spinors.

For sp(2n,R) or sp(2n,C) the condition (1.53) translates into
XJ+JXxT=0 = JX = (Jx)T, (5.225)
where J is the standard antisymmetric matrix given in (1.54). It can be represented by
Jij = —(=1)" iy , j=i—(=1). (5.226)
A basis for sp(2n,R), or sp(2n,C), is provided by the 2n x 2n matrices satisfying (5.225)

-/

[ J
0 0 0
1 |0 0 1 0
T%j: jkalJli: , i,j:1,...,2n. (5227)
ilo (—1)i+i 0 0
0 0 0 0
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An independent basis is given by {Ti;, 1 <i < j < 2n;Toi—12i—1, Toi2i—1, 1 < i < n}. The
matrices {7Tj;} satisfy

(T3, Tra] = 61 T — 8i1 Ty — Jite JimTomt — Jjt Tim I » (5.228)

and also
tr(ﬂj Tk:l) = 2(5il Ok — Jik le) . (5.229)

For any X € sp(2n,R), or sp(2n,C), then X = %XijTij, with X;; = Jj, Xy Ji; real or
complex. Using (5.228)

(X, Tij] = Xpi Ty — Xjx Tire (5.230)
so that
Xl = Xi 01 — X5t 6ki — XmImg Jii — Jim Xmt Jij » (5.231)
and hence
K(X,Y) = 1 X700 Y% = 2(n + 1) X35V, . (5.232)

For the corresponding compact group Sp(n) = Sp(2n,C) N .SU(2n) we impose, as well
as (5.225), for the corresponding Lie algebra

XT=-X o X;=-X;. (5.233)
Then (5.232) gives
KX, X) = =2(n+1) 2, | X[ (5.234)
From (5.225)
JXJ = -xT, (5.235)

so that, following the discussion in section 5.3.3, the fundamental representation of compact
Sp(n) is pseudo-real.

5.10 Orthogonal and Spin Groups

The relation SO(3) and SU(2), which is described in section 2.2, and also the introduction
of spinorial representations, described in section 2.10, may be extended to higher orthogonal
groups. In the discussion for SO(3) and SU(2) an essential role was played by the Pauli
matrices. For SO(n) we introduce similarly gamma matrices, v;, i = 1,...,n satisfying the
Clifford"® algebra,

Vv =201, A = (5.236)

The algebra may be extended to pseudo-orthogonal groups such as the Lorentz group, which
involve a metric g;; as in (1.65), by taking d;; — g;; on the right hand side of (5.236). To
obtain explicit gamma matrices for SO(n,m) it is sufficient for each j with g;; = —1 just
to let v; — iv; for the corresponding SO(n + m) gamma matrices. For the non compact
group the gamma matrices are not all hermitian. (For g;; as in (1.65) then if A =~1...7,
then Ay, A1 = —(=1)"v{.)

18William Kingdon Clifford, 1845-1879, English, second wrangler 1867.
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The representations of the Clifford algebra (5.236), acting on a representation space S,
are irreducible if § has no invariant subspaces under the action of arbitrary products of
~;’s. As will become apparent there is essentially one irreducible representation for even n
and two, related by a change of sign, for odd n. If {v}}, like {7;}, are matrices forming an
irreducible representation of (5.236) then 7 = Ay;A~!, or possibly v; = —Ay; A~ for n
odd, for some A. As a consequence of (5.236)

(v-2)?=2%1I, zeR". (5.237)

To show the connection with SO(n) we first define
Sij = %’V[i Vi = —sijl . (5.238)

Using just (5.236) it is easy to obtain

[8i5, k) = Ok Yi — dik V5 (5.239)
and hence
[sij, sw1] = Ojk sit — Oik sj1 — Oju sir, + Ot i - (5.240)
This is identical with (5.221), the Lie algebra so(n). Moreover for finite transformations,
which involve the matrix exponential of %wijsij, Wij = —Wjs,
e_%“’ijsij’y-a:e%“’”sij =y-a, 2 = Rz, R = e 2wiaSii € SO(n), (5.241)

with S;; € so(n) as in (5.220). It is easy to see that 22 = 22, as required for rotations, as a
consequence of (5.237). To show the converse we note that 7 = ~;Rj; also satisfies (5.236)

for [R;i] € O(n) so that v = A(R)y;A(R)™! where A(R) = e~2“i%i for R continuously
connected to the identity.

The exponentials of the spin matrices form the group
Spin(n) = {e_%w”'s“ twij = —wj; € R}. (5.242)

Clearly Spin(n) and SO(n) have the same Lie algebra. For n = 3 we may let 7; — o0; and
sij = sie;jxok so that Spin(3) ~ SU(2). In general, since £I € Spin(n) are mapped to
I € SO(n), we have SO(n) ~ Spin(n)/Z,.

Unlike SO(n), Spin(n) is simply connected and is the covering group for SO(n). For
further analysis we define

1

F=v7v...% = (—1)5"("_1) rf, rf = VnVYn-1---71, (5.243)

so that
r? = (-1)2"n-Hp, (5.244)

Directly from (5.236)

[, =0, nodd, T~ +~v%T =0, neven, i=1,...n. (5.245)
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Using, similarly to (2.28),
e*® = cos far ] + sin 3 2855, (5.246)

then
e it S2i-12i — r, e T ity $2i-12i — (=)™, for n=2m even. (5.247)
This allows the identification of the centres of the spin groups

Zo @ Lo, n=4m,
Ly, n=4m+ 2,
3(Spin(n)) ={I, -1} ~ Zs, n=2m+1. (5.248)

3(Spin(n)) ={I1,—-I,T,-I'} ~ {

Spinors for general rotational groups are defined as belonging to the fundamental rep-
resentation space S for Spin(n), so they form projective representations, up to a sign, of

SO(n).

5.10.1 Products and Traces of Gamma Matrices

For products of gamma matrices if the same gamma matrix v; appears twice in the product
then, since it anti-commutes with all other gamma matrices, as a consequence of (5.236),
and also 72 = I, it may be removed from the product, leaving the remaining matrices
unchanged apart from a possible change of sign. Linearly independent matrices are obtained
by considering products of different gamma matrices. Accordingly we define, for ¢ _...4, all
different indices,

Diyiy = Vi %] = ()70 0T of ) Tyt =Ta o, r=1,...n, (5.249)
where T, ;2 = (—1)%“”_1) I. From the definition (5.243)
Liyovin = €igin L' (5.250)
We also have the relations

Uiyin = (_1)%n(n—1)+%r(r—1) é Eiroviir jrogsL g1l s r+s=n. (5.251)

An independent basis for these products is given by C, = {I';, 4, 141 <2 < -+ <in},
with dimC, = (7), C, = {I'}. It is easy to see that ¢ = {£],,+¢,..., ¢, 1,£I'}
is closed under multiplication and therefore forms a finite matrix group, with dim ¢ln) —
237, (:f) = 271 The matrices {I,€1,...,¢,} may also be regarded as the basis vectors
for a 2"-dimensional vector space which is also a group under multiplication, and so this
forms a field.

When 7 is odd then from (5.245) T' commutes with all elements in ¢ and so for an
irreducible representation we must have I' o« I. Taking into account (5.244)

(5.252)

+I, n=4dm+1
+il, n=4m+3
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The + signs correspond to inequivalent representations, linked by taking v; — —~;. For
an independent basis then, as a consequence of (5.251), the products of gamma matrices
are no longer independent if r > %n, so that ¢(4m+1) — (4T +¢;,..., £C,} or, since the
products may involve i from (5.252), €4m+3) = (4] +i], 461, +iC, ..., +iCs,}.

For n even ¢(™ does not contain any elements commuting with all ~; but
[F, Sz‘j] =0. (5253)

Hence we may decompose the representation space S = S @ S—, such that 'Sy = Sy and,
since ; anti-commutes with I', 7; S+ = S+. Hence there is a corresponding decomposition
of the gamma matrices with I" diagonal and where, using (5.244),

I 0 = 4m 0 oy syij 0
I' = (0 —I)’ n ’ — <_ Z) s Sii = < +iJ ) . 5.254
{i(éof)v n:4m+2» K i 0 v 0 5-ij ( )

Clearly &; = o/ and s;; = %a[i 0j), S—ij = %5[1' ;) and just as in (5.238) we have
SiijT = —S44j5 - (5255)
With the decomposition in (5.254) the Clifford algebra (5.236) is equivalent to

Uiﬁj+0'j5i:2(5ijf, 5i0j+5j0i:25ij1' (5.256)

For traces of gamma matrices and their products we first note that from (5.236)

tr(v; (v + %)) = 2tr(y5v57) = 2tr(v) =0, j#4, nosumonj. (5.257)

We may similarly use v; I';, ;. + ', = 0, when r is odd and for j # iy,...,4,, or
Vi Ljis.ir +Ljin.i,v; = 0, when r is even and with no sum on j, to show that

tr(y, 4.) =0, except when r = n, n odd. (5.258)
Hence in general, for r,s = 0,...,n for n even, or with r, s < %n for n odd,
tr(Tyy., Tjjs) =0, r#s, (5.259)

and

tr(]‘jil-nir F]l]'r) = {

+tr(l) if (j1,...,7r) is an even/odd permutation of (i,..., 1),

0 otherwise .
(5.260)

In general these prodlucts of gamma matrices f?rm a complete set so that for any d,, x d,,
matrix A, where d,, = 22" for n even and d,, = 22(=1) for n odd,

dpn A= ItI'(A) + Z % Fi1...ir tr(FiT...il A) s (5261)

Withrzl,...,nforneven,rzl,...,%(n—l) for n odd.

94



5.10.2 Construction of Representations of the Clifford Algebra

For n = 2m an easy way to construct the y-matrices satisfying the Clifford algebra (5.236)
explicitly is to define

ar = %(727"—1 + 7:'727’) , a’/‘Jr = %(727”—1 - i72r) , r=1,...,m. (5262)
Then (5.236) becomes
aras+asa, =0, arag + aga) = 6p51, (5.263)

which is just the algebra for m fermionic creation and annihilation operators, the femionic
analogue of the usual bosonic harmonic oscillator operators. The construction of the essen-
tially unique representation space S for such operators is standard, there is a vacuum state
annihilated by all the a,’s and all other states in the space are obtained by acting on the
vacuum state with linear combinations of products of a,/’s. In general, since a,/2 = 0, a
basis is formed by restricting to products of the form []-, (a,1)" with s, = 0,1 for each 7.
There are then 2™ independent basis vectors, giving dim S = 2™. For m = 1 then we may
take, with the ‘vacuum state’ represented by ((1)),

a=o.=(38), a=0-=(99), mpe=ic=i(§%). (5.264)
The general case is obtained using tensor products

ar=I® - RIQo,Q03Q - ®03, =0 - QIQc_Qoz3Q---Q03. (5.265)
— —— — —

r—1 m—r r—1 m—r

The o3’s appearing in the tensor products follow from the requirement that a,,as, and
a,l,ad, anti-commute for r # s. With (5.265) yo,_ 170, =il ® - @[ ®@03@1---® 1 so
that

IN=i"o3®o3®--- Qo3 . (5.266)

m

These results are equivalent to defining the gamma matrices for increasing n, where
v {m)y j(") + j(")’yi(") =204 1 (n) | recursively in terms of the Pauli matrices by

’Yi(2m+2) :’Yi(Qm)(X)Ug, 1=1,...,2m,
Véiﬁﬁz) =1 @ gy, 753:122) =10 @ gy,
rem2) — i rCm) @ gy (5.267)

Note that we may take 'yi@) =0y, 1=1,2 with T® = i g3. For odd n the gamma matrices
may be defined in terms of those for n — 1 by

+1, ,
Vi(2m+1) = 71(2m) ) 1= ]-a EE) 2m) Véfnniﬁl) =Cm F(Qm) y Cm = { meeven (5268)

+i, m odd,

where the + signs correspond to inequivalent representations. Thus v{*) = (o1, 02, Fo3).
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5.10.3 Conjugation Matrix for Gamma Matrices

It is easy to see that ;! also obeys the Clifford algebra in (5.236) so that for an irreducible
representation we must have

CruCt=—4T = CTC! = (—1)2nn+) T
or CyC™l =4 = CTC! = (=1)2"= DT (5.269)

When n is even then, by taking C — CT', the two cases are equivalent. When n is odd, and
we require (5.252), then for n = 4m + 1, C must satisfy Cvy; C~! = 4L, for n = 4m + 3,
then Cy; C~! = —4{. In either case for the spin matrices in (5.238)

CSij C_l = —SijT y (5'270)
so that for the matrices defining Spin(n)
™2 iisis (e*%”“s”)T =C. (5.271)
With the recursive construction of the gamma matrices 7™ in (5.267) we may also
construct in a similar fashion C'™) iteratively since, using (5.77),
C™ A o) =1 = ()T
= "2 =M g joy ensures CMH2) A +2) 042 =1 — _\ (n42) T (5.272)
and, using oy0;01 = o, i = 1,2, 010301 = —03 ,
ct ot =1 = _ )T
= 02 =M g g ensures CM2 'yi("+2) cnt2) -1 — 7i<n+2) T, (5.273)

Starting from n = 0, or n = 2, this construction gives (note that (X @ V)T = XT @ Y1),

CrnCt=~T, crct=r7T, c=ct, n =8k,

CrnC = —~T, crct= 17, C=-CT, n=8k+2,

CrnCt=~T, crct=r7, C=-0CT, n=8k+4,

CyiC'= —4T, crct= 11, c=0T, n=8k+6. (5274)
In each case we have Cs;;C~! = —s;;7. Starting from (5.274) and with the construction in

(5.268) for odd n,

CyCt=~", c=c", n=8k+1,
CrnCt= —~T, c=-0T, n=8k+3,
CrCt=~T, c=-0T, n=8k+5,
CrniCt= —~T, c=cr, n=8k+7. (5.275)

The definition of C for n = 2m + 1 remains the same as in (5.274) for n = 2m since in each
n odd case we have Cy172...7%C™ = (M2 .. ) 7.
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If we consider a basis in which I is diagonal, as in (5.254), then for n = 8k, 8k + 4
[C,T] = 0, so that C is block diagonal, while for n = 8k + 2,8k + 6 CT + T'C = 0, so
that we may take C' to have a block off diagonal form. By considering the freedom under
C — STCS with STS™! =T we may choose with the basis in (5.254),

C = <é ?) 5 O; :O‘Z‘T7 Stij = *SiijTa ’I’L:8k‘,
C= (_0[ é) , Oj :az‘T7 0; =5iT, S+ij = —s;ijT, n=8k—+2,
J 0 T T -
C=1\y ;) =70 Joi==(Jo) , Jswyj=(Jssij), n=8k+4,
0 I T - o -
C=\{; (), oi=—0i,0=-0, Stij = —Sxij » n=28k+6. (5.276)

Here the antisymmetric matrix J can be taken to be of the standard form as in (1.54). For
n = 8k the matrices are real.

Since the generators of the two fundamental spinor representations satisfy (5.255) then
as a consequence of the discussion in section 5.3.3 we have for these representations of
Spin(n), for n even, from (5.276)

Spin(8k) : real, Spin(8k + 4) : pseudo-real
Spin(8k +2), Spin(8k + 6) : complex. (5.277)

Furthermore for n odd the single spinor representation, from (5.275), satisfies

Spin(8k + 1), Spin(8k + 7) : real, Spin(8k + 3), Spin(8k + 5) : pseudo-real. (5.278)

5.10.4 Special Cases

When n = 2 we may take
oi=(L,—i), o= (L1), (5.279)

while for n = 4 we may express g;, 7; in terms of unit quaternions
o, =1,—i,—j,—k), o= (1,1,5,k). (5.280)
For low n results for y-matrices may be used to identify Spin(n) with other groups.
Thus

Spin(3) ~ SU(2), Spin(4) ~ SU(2) ® SU(2),
Spin(5) ~ Sp(2), Spin(6) ~ SU(4) . (5.281)

For n = 3 it is evident directly that e"2wisi ¢ SU (2). For n = 4 as a consequence of
(5.251), with the decomposition in (5.254), we have

Stij = g Eijkl Skl (5.282)
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so that e~ 2 @i = ¢~ 3 W+iis+ij @ e~ 3 “—ii%~ij factorises a 4 x 4 Spin(4) matrix into a product
of two independent SU(2) matrices as w4;; = %wij + % €ijkl Wit are independent. For n =5
then the 4 x 4 matrix e~ 2“5 € SU(4) N Sp(4,C), using (5.271) with CT = —C. In this
case there are 10 independent s;; which matches with the dimension of the compact Sp(2).
For n = 6, e 3 Wi € SU(4) with the 15 independent 4 x 4 matrices s4,; matching the
dimension of SU(4). Note also that, from (5.248), 3(Spin(6)) ~ Z4 ~ 3(SU(4)). Using
(5.276) with (5.254), the transformation (5.241) can be rewritten just in terms of the SU(4)
matrix ) ) .

e 2Vt g g (e 2W9%I) =g, (5.283)

which is analogous to (2.19). The result that the transformation x — 2’ satisfies z? = 22

also follows in a similar fashion to (2.21), but in this case using the Pfaffian (1.55) instead
of the determinant since we require Pf(c - 2) = 22 (from o -2 & - & = 22 I then, with n = 6,
det(o - x) = (22)?).

6 SU(3) and its Representations

SU(3) is an obvious generalisation of SU(2) although that was not the perception in the
1950’s when many physicists were searching for a higher symmetry group, beyond SU(2)
and isospin, to accommodate and classify the increasing numbers of resonances found in
particle accelerators with beams of a few GeV. Although the discovery of the relevance
of SU(3) as a hadronic symmetry group was a fundamental breakthrough, leading to the
realisation that quarks are fundamental constituents, it now appears that SU(3) symmetry
is just an almost accidental consequence of the fact that the three lightest quarks have a
mass which is significantly less than the typical hadronic mass scale.

Understanding SU(2) and its representations is an essential first step before discussing
general simple Lie groups. Extending to SU(3) introduces many of the techniques which
are needed for the general case in a situation where the algebra is still basically simple and
undue mathematical sophistication is not required. For general SU(N) the Lie algebra is
given, for the associated chosen basis, by (5.215) where, since the corresponding matrices in
(5.214) are not anti-hermitian, we are regarding the Lie algebra as a complex vector space.
To set the scene for SU(3) we reconsider first SU(2).

6.1 Recap of su(2)

For the basic generators of su(2) we define in terms of 2 x 2 matrices as in (5.214)

N B X BN ) B

which satisfy the Lie algebra

le4,e_]=h, [her] =+2eq . (6.2)
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These matrices satisfy
el =e_, Al =h. (6.3)

Under interchange of the rows and columns

b:<(1) (1]) = bler,e—,h}b~ ' ={e_,es,—h}. (6.4)

Clearly > = I and {e+, e_, h}, {e_, ey, —h} must satisfy the same commutation relations
as in (6.2) so b generates an automorphism.

For representations of the su(2) Lie algebra then we require operators
[:{E+7E77H}7 [EJME*] =H, [Hin] =+2FE;. (65)

It is easy to see that the commutation relations are identical with (2.41a) and (2.41a), and
also the hermeticity conditions with (2.42), by taking Jy — FEi, 2J3 — H. Indeed the
representation matrices in (6.1) then correspond exactly with (2.77).

An important role in the general theory of Lie groups is played by the automorphism
symmetries of a privileged basis for the Lie algebra which define the Weyl'® group. For
su(2) the relevant basis is given by (6.5) and then from (6.4) there is just one non trivial
automorphism

[ (p={E_, By, ~H}. (6.6)
Since b% = I the Weyl group for su(2), W(su(2)) ~ Z,.

For representations we require a finite dimensional representation space on which there
are operators Fy, H which obey the commutation relations (6.5) and subsequently require
there is a scalar product so that the operators satisfy the hermeticity conditions in (6.3).
A basis for a representation space for su(2) is given by {|r)} where

Hir)=r|r). (6.7)
The eigenvalue r is termed the weight. It is easy to see from (6.5) that
Ei|r) oc|r£2) unless FEi|r)=0 or E_|r)=0. (6.8)

We consider representations where there is a highest weight, rmax = n, and hence a highest
weight vector |n)yy, satisfying
Ei|n)pw =0. (6.9)

The representation space V,, is then spanned by
{E 7 In)pw :7 =0,1,... }. (6.10)

On this basis
HE "n)pw = (n—2r) E"n)py , (6.11)

9Hermann Klaus Hugo Weyl, 1885-1955, German.
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and using
(B, E ZE r=s-l g, E_]ES 12 (H-2s)=F_""'r(H-r+1), (6.12)

then from (6.9),
ELE )y =7(n—7r+1) E" " Hn)ny (6.13)

(6.11) and (6.13) ensure that the commutation relations (6.5) are realised on V/,.
If n e Ny, orn=0,1,2,..., then from (6.13)
|—1 — 2pw = B n)pw € Vi, (6.14)

is also a highest weight vector, satisfying (6.9). From |—n — 2)},, we may construct, just as
n (6.10), a basis for an associated invariant subspace

Vo oCV,. (6.15)

Hence the representation space defined by the basis V,, is therefore reducible under the action
of su(2). An irreducible representation is obtained by restricting to the finite dimensional
quotient space

Vo =Vo/Von_s. (6.16)

In general for a vector space V' with a subspace U the quotient V/U is defined by
VIU = { o)/~ o) ~ /) i o) = o) € U} (6.17)

It is easy to verify that V/U is a vector space and, if V, U are finite-dimensional, dim(V/U) =
dimV —dimU. If X is a linear operator acting on V' then

U—U = {XPp)/ ~}={X)/ ~} it o)~ ) = X:V/U—=V/U. (618)

Thus, if U C V is an invariant subspace under X, then X has a well defined action on V/U.
Furthermore for traces

tryu(X) = try (X) — trg (X). (6.19)

Since V_,,_5 is an invariant subspace under the action of the su(2) Lie algebra generators
we may then define F1, H to act linearly on the quotient V,, given by (6.16). On V), this
ensures

E " n)w =0, (6.20)

so that there is a finite basis {E_"|n)pw : 7 = 0,...,n}. In terms of the angular momentum
representations constructed in section 2, n = 2j. The space V,, may equally be constructed
from a lowest weight state |—n) satisfying H|—n) = —n|—n), E_|—n) = 0, in accord with
the automorphism symmetry (6.4) of the su(2) Lie algebra.

If we define a formal trace over all vectors belonging to V,, then

tn+2

Ci(t) = try, (t7 Zt” r— (6.21)
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where convergence of the sum requires |[t| > 1. Then for the irreducible representation
defined on the quotient V,,, by virtue of (6.19), the character is

tn+2 _ tfn tn+1 _ t,n,I

Xn(t) = try, (tH) =Cp(t) —Cpa(t) = 2_1 t— -1 (6'22)
This is just the same as (2.81) with ¢t — €139 and n — 2j. It is easy to see that
Xn(l) =dimV, =n+1. (6.23)

Although the irreducible representation of su(2) are labelled by n € Ny the characters may
be extended to any integer n with the property

Xn(t) = =X-n—2(t), (6.24)
as follows directly from (6.22). Clearly x_1(t) = 0.
The su(2) Casimir operator in this basis
C=E.E_+E E{+iH*=2FE E, +1H*+H, (6.25)
and it is easy to see that
Cln)hw = Cn|n)hw for e =3n(n+2). (6.26)

Note that c_,,—2 = ¢, as required from (6.14) as all vectors belonging to V,, must have the
same eigenvalue for C.

6.2 A su(3) Lie algebra basis and its automorphisms

We consider a basis for the su(3) Lie algebra in terms of 3 x 3 matrices as in (5.214). Thus
we define

010 0 0O 0 01
e;l+ =10 0 0], esrx =10 0 1], es+ =10 0 0], (6.27)
0 00 0 00 0 00
and their conjugates
eio =eiy, i=1,2,3, (6.28)
together with the hermitian traceless diagonal matrices
1 0 0 00 O
hi=10 -1 0], ho=10 1 0 (6.29)
0 0 O 0 0 —1

The commutator algebra satisfied by {ei+,eat,es1,hi, ha} is invariant under simultane-
ous permutations of the rows and columns of each matrix. For b corresponding to the
permutation (12) and a to the cyclic permutation (12 3)

0 0

1 00 1
b=(10 0|, a=[10 0], (6.30)
00 1 010
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then
b{hy, ha}b™t = {—hy,hy + ha}, bleir,ear, ez b = {e1x, €34, €21},
af{hy, hQ}cfl = {ha,—h1 — ha}, a{eit,eat, egi}afl = {eat,e3,e11} - (6.31)
The matrices in (6.30) satisfy
V=1, =1, ab = ba?, (6.32)
so that they generate the permutation group S3 = {e, a, a?, b, ab, a’b}.

For representations of su(3) it is then sufficient to require operators

N 1(2H; + Hy) Eqy Esy
{Ei+,Eos, B3y, Hi, Ho} — [RY] = By $(—Hi + Hy) Eay ;
Es_ Ey_ —%(Hy + 2Hy)

(6.33)
acting on a vector space, and satisfying the same commutation relations as the corresponding
matrices {e14, €94, €31,h1,ha}. The commutation relations may be summarised in terms

Of Rij by . ) . o
[R';, R¥)]) = 6% RY — " R¥; (6.34)

since, for X,Y appropriate matrices, (6.34) requires
[tr(X R), tr(Y R)] = tr([X,Y]R), (6.35)

and with the definitions (6.27) and (6.29) we have, from (6.33), tr(e;+RR) = Ejx, i = 1,2,3
and tr(h;R) = H;, i = 1,2.

Just as with su(2) the possible irreducible representation spaces may be determined
algebraically from the commutation relations of the operators in the privileged basis given
in (6.33). Crucially there are two commuting generators Hj, Hs so that

[Hi,H] =0. (6.36)

For E;; the commutation relations are
[Evs, Exr] = Esy . [Eiy, E3y] = [Eay, B3] =0. (6.37)

while under commutation with Hy, Ho

[Hi,{E1+, Byt E31}| = £ {2E11, —Esy, F34},
[Hy,{E1+, Byt  E31}| = £ {—F1+,2E+, E3: } . (6.38)

The remaining commutators involving E;1 are

[E1+7E1—] :H17 [E1+7E2—] :Oa [E2+7E2—] :H27
(B3, By | = —Esy, [E3y, By ]=FE1y, [E34, B3 |=H+ Ho, (6.39)

together with those obtained by conjugation, [X,Y]t = —[XT, Y], where E;if = Ei+ and
Hi = H,.
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The su(3) Lie algebra basis in (6.33) can be decomposed into three su(2) Lie algebras,
h={Ei, Ei_ Hi},  L={FEy Er Ho},  [3={Esy Es_ Hi+H}, (640)

where each [; satisfies (6.5). From (6.31) the automorphism symmetries of the privileged
basis in (6.33) are generated by

h—hr, —ol, 3ol h—1l, l—Br, [3—hg, (6.41)
b b b a a a
with the reflected su(2) Lie algebra defined by (6.6). The corresponding Weyl group, defined
in terms of transformations a, b satisfying (6.32), W (su(3)) ~ Ss.

If we define

H, = %(Hl + 2H2) s (6.42)

then the automorphism symmetries become
_ _1 V3, g, 1
(Hl,HL)7( H,H,), (Hi,Hy) — (-gHi + 5 Hy, =5 Hy — 5H, ). (6.43)

Regarding Hy, H | as corresponding to Cartesian x,y coordinates then b represents a reflec-
tion in the y-axis and a a rotation through 27 /3.

6.3 Highest Weight Representations for su(3)

H,, Hy commute, (6.36), and a standard basis for the representation space for su(3) is given
by their simultaneous eigenvectors |ri,r2) where

H1|7"1,7"2> = 7"1|T'1,7“2> s H2|7"1,7“2> = T2|7‘1,7“2> . (6.44)
As a consequence of (6.38) we must then have

Eiilri,re) o [r1 £2,r2 F 1),
Eoilri,re) o< [r1 F1,r9 £2),
E3:|:|T1,7“2> X ’7”1 + 1,7“2 + 1> s (6.45)

unless E;; and/or E;_ annihilate |ry,r2) for one or more individual i. The set of values
[r1,72], linked by (6.45), are the weights of the representation. The may be plotted on a
triangular lattice with r; along the z-axis and %(rl + 2r7) along the y-axis.
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For any element o € W(su(3)) there is an associated action on the weights for su(3),
o[r1,re], such that

HZ‘—>HIZ', HIi‘Tl,T2> :T,Z"ThTQ), 7= 1,2 = [7”/1,7“/2] :0'[7“1,7'2]. (6.46)
(o
From (6.41) this is given by
blri,ro) = [—r1,m1 +12], ab[ri,ra] = [r1 + 72, —ra], a2b[rl,r2] = [—ry, —11],
alri,re) = [re,—r1 — 2], a’[r1,ro] = [—r1 — ro, ). (6.47)

As will become apparent the set of weights for any representation is invariant under the
action of the Weyl group, thus su(3) weight diagrams are invariant under rotations by 27/3
and reflections in the y-axis.

For a highest weight representation there is a unique vector |nq, ne)ny, such that for all
other weights r1 + 79 < nj + na. [n1,neo is the highest weight and we must then have

Eif|ni,no)nw = EogIni,no)hw =0 = Esi|ni,no)pw =0. (6.48)

The corresponding representation space Vi, ,,) is formed by the action of arbitrary products
of the lowering operators E;_, ¢ = 1,2, 3 on the highest weight vector. For a basis for V},;, ,,,]
we may choose

{E5'Ey*E1 "|ni,no)pw i 1,5, 6 =0,1,... }, (6.49)

where the ordering of Ey_, Fa_, F5_ in (6.49) reflects an arbitrary choice, any polynomial
in By, Ey_, E5_ acting on |n1,ng) may be expressed uniquely in terms of the basis (6.49)
using the commutation relations given by the conjugate of (6.37).

For these basis vectors

Hy B3 "By SEy "|nq, na)pw = (n1 — 2r + s — t) B3 "By *E1_"ng, o)
Hy B3 "By 5By "|ni, na)pw = (n2 +7 — 25 — t) B3 "Ey *E1_"ny, no)hw (6.50)
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so that the weights of vectors belonging to Vj,, ,) are those belonging to a 27/3 segment
in the weight diagram with vertex at [n1,n2], as shown by the shaded region in the figure
below.

It is clear that the basis (6.49) for V|, »,) requires that in general the allowed weights
are degenerate, i.e. there are multiple vectors for each allowed weight in the representation
space Vi, n,) €xcept on the boundary. For a particular weight [r1, r2], (6.49) gives the k +1
or [ 4+ 1, depending on which is the less, independent vectors,

Es 'Ey B R ng no)ny 0<t<kl, (6.51)

where
k=3(2n1+ny—2r1 —7r3),  1=3(n1+2ng—r1 —2r3). (6.52)

The representation of su(3) is determined then in terms of the action of E;+ on the basis
(6.49). For the lowering operators it is easy to see that

Fs_ F3 'Fy *E1 "ny,n2)nw = B3 "7 By *Ey "ng, n2)hw
Ey F3 'Fy *E1 "In1,no)nw = B3 "By T Ey1 "ng, n2)hw
Ey_FE3 'Ey *E1 "In1,no)nw = B3_'Ba E1 " ng, no)nw
— s E3 " Ey STYE Tng, no)hw (6.53)

using [By_, By ] = —s B3 Ey 571

The action of E;; on the basis (6.49) may then be determined by using the basic
commutation relations (6.39), with (6.38) and (6.37), and then applying (6.48). Just as in
(6.12) we may obtain

[EH-’ El_r] == El_r_l T(Hl —r—+ 1) 5 [El-l-: EQ_S] = 0, [El-l-v Eg_t] = —t Eg_t_lEg_ 5
(6.54)
so that

Ery Es 'Ey *E) " |ny,no)hw
= T‘(nl —r+ 1) Eg_tEg_sEl_ |n1, n2> —t Eg_t 1E2_s+1E1_ |n1, ng)h . (655)
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Similarly
[Eay, B3 '] =tEs "By, [E1_, By ] = —sE3_E, ',
[Bay, By | = By 5 's(Hy —s+1),  [Fay, 1] =0, (6.56)
which leads to
By B3 'Ey °Fy_"|ny, no)w
=s(ng+r—s—t+1)E3 "By " B "ng, na)pw +t B3 T Ey SEL T ng, nodny - (6.57)
Furthermore
Es B3 'Ey °Ey "|n1, no)ww = [E14, Bor] Es_ By *Ey " ny, na)nw

=tni+ne—r—s—t+1) ngt_lEQ,SElfqnl, 12) hw
+ 7‘8(711 —r+ 1) Eg_tEQ_SflEl_Tilynl, n2>hw . (658)

The results (6.50), (6.53) with (6.55), (6.57) and (6.58) demonstrate how V,, ., forms
a representation space for su(3).

Defining now
W ={[m,n]: m,n € Ny}, (6.59)

which corresponds to the sector of a weight diagram shown below,

then, if [n1, na] € W, Vj,, n,) contains further highest weight vectors, satisfying (6.48), which
may be used to construct invariant subspaces. Directly from (6.55) and (6.57) it is easy to
see that

|=n1 = 2,11 4 ng + Dpw = E1-" 7 g, no) i
In1 4+ ng + 1, —ng — 2nw = F2 "2 ng, nadpy
|n2, —n1 — N9 — 3>hw = E2_n2+n1+2‘_n1 — 2, niy + no + 1>hw , (6.60)
satisfy the necessary conditions (6.48). In general, a linear combination of the vectors in

(6.51)

rre) = > ay B3 By T B F g ng ) (6.61)
0<t<k,l
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satisfies the highest weight conditions (6.48), by virtue of (6.55) and (6.57), only if
(k—t)(ni—k+1+t)a;— (t+1) a1 =0,
(l—t)(no+k—1l+1—t)ar+ (t+1) a1 =0, (6.62)
for all relevant ¢. This requires
(k—=t)(ni—k+1+t)=—-(1—-t)(ne+k—-1+1-1), (6.63)
which has two solutions
k=ni+ns+2 = Il=no+1 or l=ny1+ne+2. (6.64)

It is then possible to construct two further highest weight vectors |[—nj; — ny — 3,11 )y and
|—ng — 2, —n1 — 2)pw. Just as in (6.60) we may write
|=n1 —n2 — 3,01 )hw = B1-2T" 20y + 0o + 1, —ng — 2)hw (6.65)

and furthermore??

|—n2 — 2, —MNn1 — 2>hw = El_”2+1|n2, —Nn1—Nn9 — 3>hw = E2_n1+1’_n1 —ng — 3, n1>hw . (6.66)

It is not difficult to see that for each of highest weight vectors given in (6.60), (6.65) and
(6.66), |n'1, [n%), there are associated invariant, under the action of su(3), subspaces V1 s,
contained in V},, ,,). In particular

[fn172,n1+n2+1] ) ‘/v[n1+n2+1,fn272] C ‘/[nl,ng] )
V[nz,—n1—n2—3] - V[—m—lm-i-nz-i-l} ) V[—nl—nz—?), ni] © V[n1+n2+1,—n2—2] )
‘/[—ng—Z,—nl—Z] C Vv[ng,—nl—ng—fi] N ‘/[—nl—ng—& nil - (667)

The highest weight vectors which are present are illustrated on the weight diagram below,
with the shaded regions indicating where the associated invariant subspaces are present.

*To show this use E1_"E>_* = >"1_ (=1)"(}) (Sf!t)! E3 'Ey s7t'E Tt
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[-ry —2,5 +p +1] =0
[+l

The reduction to an irreducible representation space becomes less trivial than that
given by (6.16) for su(2) due to this nested structure of invariant subspaces. Using the
same definition of the quotient of a vector space by a subspace as in (6.16) we may define

V(2[1)7,1,n2} = (Vv[n%,nl,nz,:;] S ‘/[7n17n273,n1])/ V[fn272,7n172] y
V(b)lhnﬂ = (Vv[*n1*2,ﬂ1+n2+1] S ‘/[n1+n2+1,7’ﬂ272])/V(%’I)Ll,’ng] 5

V[m,nz} = V[nhnz}/v(%?)u,nz] : (668)

In Vj, n,) there then are no highest weight vectors other than |1, m2)hw SO invariant sub-
spaces are absent and V,, ,) 1S a representation space for an irreducible representation
of su(3). Although it remains to be demonstrated the representation space is then finite-
dimensional and the corresponding weight diagram has vertices with weights

[nl,nz]a [—n17n1+n2]» [n1+n2,—n2], [_nl_n%nl]a [nz,—nl—nz], [—nz,—nﬂ

which are related by the transformations of the Weyl group as in (6.47).

6.3.1 Analysis of the Weight Diagram

To show how (6.68) leads to a finite-dimensional representation we consider how it applies
to for the vectors corresponding to particular individual weights [rq,r2]. Accordingly we
consider restrictions of the highest weight spaces. For V|, ,,,) the relevant subspace is formed
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by the basis in (6.51)

V(k’l) ] = {Zogtﬁkl Qg E37tE2,l_tE1,k_t|n1,7’L2>hw} 5 (670)

[n1,m2

where k,[ are determined as in (6.52). Clearly these subspaces are finite-dimensional with

k+1, k<1
dimy ) R ME (6.71)
nal = 11, 1<k,
In a similar fashion we may define
(k—n1—1,0) (k,l—n2—1)
[-n1—2,n1+n2+1] [P1+n2+1,—n2—2]’
(k—n1—1,l—n1—n2—2) (k—n1—n2—2,l—ng—1) (k—n1—n2—2,l—n1—nz—2)
[TLQ,*TlLlfn273] ’ [7n1jn273,n1} ) ‘/[771,272,771,172] ’ (672)

which form nested subspaces, just as in (6.67), and whose dimensions are given by the
obvious extension of (6.71).

To illustrate how the construction of the representation space V},, ,,,] in terms of quotient
spaces leads to cancellations outside a finite region of the weight diagram we describe how
this is effected in particular regions of the weight diagram by showing that the dimensions
of the quotient spaces outside the finite region of the weight diagram specified by vertices in
(6.69) are zero and also that on the boundary the dimension is one. For k < nq, [ < ng there

(k,1) (k==L

are no cancellations for V[ e Taking into account the contributions from

y 3 ni,n [=n1—2m14+n2+1]
and V[m’ +n22+1,7n272} gives
(kD) . (k—ni—1]) _Jo it E>l+m+1,1>0,
dim V[m,nz] — dim ‘/'[7n17127n1+n2+1] = . - (6.73)
1 if k=1l4mn1,1>0,
and
(kD) . (kd—na—1) )0 if I>k+na+1, k>0,
dim V"7 — dim V[n1+n22+1,—n2—2} = o (6.74)
1 if Il=k+4+ng, k>0.
Furthermore
(kD) . (k—ni—1,0) Ak l—na—1)
dim V[n1,n2] — dim V[*m —2n14+n2+1] dim V[ﬂl+n2+1ﬁn2*2]
- l+1—n2—(l—n2):1, k=n1+ns9, no <l <ny+ny, (675)
B k—i—l—(k—nl)—nl:l, l=n14+no,n <k<ni+ns. '

The remaining contributions, when present, give rise to a complete cancellation so that the
representation space given by (6.68) is finite dimensional. When [ > ng, k > nj + ng + 1,

. (k1) . (k—n1—1,0) . (k,l—n2—1) . (k—n1—ng2—2,0—n2—1)
dim ‘/[nl,ng] — dim ‘/[—nl—Z,nl—i-nQ-‘rl] — dim Vv[nl—i—nz-i—l,—nz—Q} + dim Vv[—n1 —n2—3,n1]
JU4+1) = (0+1) = (1 —n2)+ (I —n2), E>14+n+1
(l—|—1)—(k:—n1)—(l—n2)+(k—n1—n2—1), I <kE<l+n+1
—0, (6.76)
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and for k,l > ny + ny + 1 in an analogous fashion

(k1) (k—m1—1,0) (k,l—n2—1) (k—n1—1,l-n1—nz—2)
dlmv’[n na] _dlmvr[ ni 12 ,n1+n2+1] dlm‘/[n +n2%|—1— —2] +d1m‘/[n2 —rlLl —no— 31} ’

+d1mV(k ni—ng—2,l—-ngs—1) dlmv(k ni—no—2,l-ni1—no—2) —0. (677)

[-n1—n2—3,n1] [-n2—2,—n1—2]

For the finite representation space Vj,, n,) then at each vertex of the weight diagram
as in (6.69) there are associated vectors which satisfy analogous conditions to (6.48), in
particular

(Er-, B31)|—n1,n1 +n2) =0, (Ea—, E31) |n1 + na, —n2),
(Eog, E3_)|—n1 —na,n1) =0, (Erg, E3—) |ng, —n1 —ng) =0,
(Elf, EQ,) |—’I’L2, —TL1> =0. (678)

Each vector may be use to construct the representation space by acting on it with ap-

propriate lowering operators. In this fashion V), ,,; may be shown to be invariant under
W (su(3)).

A generic weight diagram has the structure shown below. The multiplicity for each
weight is the same on each layer. For n; > ng there are ny 4 1 six-sided layers and then the
layers become triangular. For the six-sided layers the multiplicity increases by one as one
moves from the outside to the inside, the triangular layers all have multiplicity no + 1. In
the diagram different colours have the same multiplicity.

6.3.2 SU(3) Characters

A much more straightforward procedure for showing how finite dimensional representations
of SU(3) are formed is to construct their characters following the approach described for
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SU(2) based on (6.21) and (6.22). For the highest weight representation space Vi, »,] we
then define in terms of the basis (6.49)

_ H Ho\ __ n1—2r+s—t 4 no+r—2s—t
C[nhnz} (t1,t2) = trv[nLnQ] (tl Ltg 2) = Z t to"?
r,s,t>0

=t Y (taftR) (/1) (1/tite)" (6.79)

r,s,t>0
For a succinct final expression it is more convenient to use the variables
u = (ul,uQ,U3) s Ul = tl , Uz = 1/t2, ujuU2U3 = 1, (680)

so that to/t1> = us/uy, t1/ts> = uz/uz, 1/t1ts = u3/u; and convergence of the sum requires
up > ug > ug. Then

ulnl +no+2 U2n2+1

Clnyng) () = (6.81)

(u1 — uz)(ug —uz)(u1r —uz)

Following (6.68) the character for the irreducible representation of su(3) obtained from the
highest weight vector |nj, no)ny is then

X[nl,ng](u) = C[nhnz}(u) - C[fn172,n1+n2+1}(u) - C[n1+n2+1,7n272} (u)
+ C[—n1—n2—3,n1](u) + C[nz,—nl —no—3] (u) - C[—n2—2,—7u—2] (u)
1

(w1 — u2)(u2 — us)(ur — uz)
X (uln1+n2+2 u2n2+1 _ u2n1+n2+2 uln2+1 _ uln1+n2+2 u3n2+1

+ u2n1+n2+2 u3n2+1 . u3n1+n2+2 u2n2+1 + u3n1+n2+2 uln2+1) ) (6.82)

It is easy to see that both the numerator and the denominator are completely antisymmetric
s0 that X[n, n,)(u) is a symmetric function of u1,uz, us, the S ~ W (su(3)).

If we consider a particular restriction we get

B 1 _ qn1+1 1 _ qn2+1 1— q—nl—ng—Q

LY = 6.83
X[nmlg](% 4 ) 1—gq 1—¢q 1_q_2 ) ( )

and hence it is then easy to calculate
dim V[TL1,7L2] = X[n17n2}(1, 1, 1) = %(')’Ll + 1)(TL2 -+ 1)(77,1 “+ no + 2) . (6.84)

The relation of characters to the Weyl group is made evident by defining, for any element
o € W(su(3)), a transformation on the weights such that

[r1,m2)” = olr1 + 1,72 + 1] — [1,1]. (6.85)

Directly from (6.47) we easily obtain

[T’l,rg]b = [—Tl —2,r1+ 10+ 1] , [Tl,rz]ab = [T1 +ro+1,—1r9 — 2] ,
[11,72] = [ro, —11 — 12 — 3], [r1,m2)% = [—r1 — 19 — 3,71],
[r1,72)9° = [=rp — 2, —11 — 2]. (6.86)
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Clearly [ni1,n2]? generates the weights for the highest weight vectors contained in %
as shown in (6.60), (6.65) and (6.66). Thus (6.82) may be written more concisely as

X)) = D Po Clayng)r (W) = Y Clny gy (00) (6.87)

o€ES3 o€S3

ni,nal>

with, for o € S3,

(6.88)

p_ —1, o odd permutation,
7 1, o even permutation,

and where ou denotes the corresponding permutation, so that b(uj,ug,us) = (ug,u1,us),
a(u1, ug,uz) = (uz,u3,u1). The definition of X[, n,)(u) extends to any [n1,na] by taking

X[nhnz}" (u) = PUX[nl,nQ] (U’) * (689)
Since [-1,7]° = [~1,7], [r, —1]® = [r, —1] and [r, = — 2]*°* = [, = — 2] we must then have
X[-1,7] (’LL) = X[r,—1] (’LL) = X[r,—r-2] (u) =0. (690)

This shows the necessity of the three factors in the dimension formula (6.84). It is important
to note that for any [nq, ns]

ny,ng # —1, ny +ng # -2, [n1,n2]7 € W for a unique o € S, (6.91)

where W is defined in (6.59).

6.3.3 Casimir operator

For the basis in (6.33) the su(3) quadratic Casimir operator is given by

C=R;R; =0 (EiyEi- + E;i_Eiy) + 2(H? + H + H H>)
= Z?zlEi,EiJr + %(HP + H22 + HlHQ) + 2(H1 + HQ) . (6.92)

Acting on a highest weight vector
Cln1, m2)hw = Clny o) 115 72) 1w » (6.93)
where, from the explicit form in (6.92),
Chunma] = 2(nf® + ng +ning) +2(n1 + ng). (6.94)

It is an important check that cp,, n,j0 = C[n, ny] as required since C' has the same eigenvalue

Clny,ng] for all vectors belonging to Vi, p,)-
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6.3.4 Particular SU(3) Representations

We describe here how the general results for constructing a finite dimensional su(3) irre-
ducible representation spaces V,, n,) apply in some simple cases which are later of physical
relevance. The general construction in (6.68) ensures that the resulting weight diagram is
finite but in many cases the results can be obtained quite simply by considering the su(2)
subalgebras in (6.40) and then using results for su(2) representations.

The trivial singlet representation of course arises for n; = ny = 0 when there is unique
vector |0,0) annihilated by E;+ and H;.

A particularly simple class of representations arises when no = 0. In this case applying
the su(2) representation condition (6.20) the highest weight vector must satisfy

E1 " ng, 0w =0,  Ea_|ng,0)nw = 0. (6.95)
Furthermore, using [Es,, By "] = —rEy "'y,
Esi E1 "|n1,0)pw =0, (Hy + H2) E1"|n1, 0w = (n1 — 1) E1-"n1, O)pw,  (6.96)
so that E1_"|ny, 0)nw is a su(2), highest weight vector so that from (6.20) again
Es ™M~ B Tng, 0)py = 0. (6.97)
Hence a finite dimensional basis for V,, o is given by
E3 'Ey "|n1, 0)py t=0,...n1—7r,r=0,...,n1, (6.98)

where there is a unique vector for each weight [n; — 2r — ¢,r — t], which therefore has
multiplicity one. It is easy to check that this is in accord with the dimension of this
representation dim Vp,, o) = %(nl + 1)(ny +2).

These representations have triangular weight diagrams as shown below.




A corresponding case arises when nq = 0 and the roles of E1_ and E»_ are interchanged.
In this case the basis vectors for V[O,TLQ] are just E3_tE2_s]0,n2>hW fort = 0,...n9 — s,
s =0,...,ny and the weight diagram is also triangular.

In general the weight diagrams for V,, ,,) may be obtained from that for Vi, ., by
rotation by 7, these two representations are conjugate to each other.

The next simplest example arises for n; = ng = 1. The su(2) conditions (6.20) for the
highest weight state require

E1 21, D)y = Fo 2|1, Dy = E3.3]1, Dy = 0. (6.99)

Since E1_|1, 1)y is a highest weight vector for su(2);, and, together with Fo_|1, 1)}y, is
also a su(2), highest weight vector then the weights and associated vectors obtained from
|1, 1)y in terms of the basis (6.49) are then restricted to just

[_172] : El—‘171>hW7 [27_1] : E2—‘171>hW7 [070] : E3—’171>hW7 EQ—EI—’171>hW7
[_2> 1] : E37E1*|17 1>hW ) [17 0] : E37E27|17 1>hW ) E272E17|1a 1>hW ’
[—1,-1]: B3 %1, D)pw, E3_Fo Fy_|1, 1)1y . (6.100)

However (6.99) requires further relations since
By *Ei_ |1, 1)y = (Eo—E1_Es_ + E3_Es_)|1, 1)y = 2 E3_Es_|1, L)y, (6.101)
which then entails

BBy By |1, 1)py = —2E3_ Ey E1_[1, 1)1y
=2 E17E37E27|17 1>hvv = 2(E37E27E17 - E372) ‘L 1>hvv ) (6102)
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so that furthermore
B3 21, 1) =2F3_FEy By _|1,1)py . (6.103)

All weights therefore have multiplicity one except for [0, 0] which has multiplicity two. The
overall dimension is then 8 and V; 1] corresponds to the SU (3) adjoint representation. The
associated weight diagram is just a regular hexagon, invariant under the dihedral group
D3 ~ S3, with the additional symmetry under rotation by 7 since this representation is
self-conjugate.

6.4 SU(3) Tensor Representations

Just as with the rotational group SO(3), and also with SU(2), representations may be
defined in terms of tensors. The representation space for a rank r tensor is defined by
the direct product of r copies of a fundamental representation space, formed by 3-vectors
for SO(3) and 2-spinors for SU(2), and so belongs to the r-fold direct product of the
fundamental representation. Such tensorial representations are reducible for any r > 2 with
reducibility related to the existence of invariant tensors. Contraction of a tensor with an
invariant tensor may lead to a tensor of lower rank so that these form an invariant subspace
under the action of the group. Tensor representations become irreducible once conditions
have been imposed to ensure all relevant contractions with invariant tensors are zero.

For SU(N) it is necessary to consider both the N-dimensional fundamental representa-
tion and its conjugate, SU(2) is a special case where these are equivalent. When N = 3 we
then consider a complex 3-vector ¢ and its conjugate ¢; = (¢°)*, i = 1,2, 3, belonging to
the vector space S and its conjugate S, and which transform as

¢ — A, @G-ogATY,,  [4] e SUB). (6.104)
A (r, s)-tensor T;j;: is then one which belongs to S(® S)"~!(® S)* and which transforms
as
Titr — Al Al TR (AT (AT (6.105)
The conjugate of a (7, s)-tensor is a (s, r)-tensor
T = (1) (6.106)
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The invariant tensors are a natural extension of those for SU(2), as exhibited in (2.156)
and (2.157). Thus there are the 3-index antisymmetric e-symbols, forming (3,0) and (0, 3)-
tensors, and the Kronecker §, which is a (1, 1)-tensor,

eh ek, O (6.107)

That €Y% and €;jk are invariant tensors is a consequence of the transformation matrix A
satisfying det A = 1. The transformation rules (6.105) guarantee that the contraction of an
upper and lower index maintains the tensorial transformation properties. In consequence
from a tensor T]’j;; then contracting with ¢“min or E€jimin, fOr some arbitrary pair of
indices, generates a (r+1,s —2) or a (r — 2, s+ 1)-tensor. Similarly using ¢ we may form
a (r —1,s — 1)-tensor. Thus the vector space of arbitrary (r,s)-tensors contains invariant
subspaces, except for the fundamental (1,0) or (0,1) tensors or the trivial (0,0) singlet.
Just as for SO(3) or SU(2) we may form an irreducible representation space by requiring
all such contractions give zero, so we restrict to (r,s)-tensors with all upper and lower
indices totally symmetric, and also traceless on contraction of any upper and lower index,

it — glitin) =gl (6.108)

]1-~-js (]1]5) ) jln-js—li

The vector space formed by such symmetrised traceless tensors forms an irreducible
SU(3) representation space V.. To determine its dimension we may use the result in
(2.124) for the dimension of the space of symmetric tensors, with indices taking three
values, for n = r, s and then take account of the trace conditions by subtracting the results
forn=r—1,s — 1. This gives

dim Vg = 3(r+ D)(r+2) 5(s +1)(s +2) — 57(r + 1) 3s(s + 1)
=ir+1D)(s+1)(r+s+2). (6.109)
This is of course identical to (6.84). The irreducible representation space constructed in

terms of (r, s)-tensors is isomorphic with the finite dimensional irreducible space constructed
previously by analysis of the Lie algebra commutation relations.

6.4.1 su(3) Lie algebra again

For many applications involving SU(3) symmetry it is commonplace in physics papers to
use a basis of hermitian traceless 3 x 3 matrices, forming a basis for the su(3) Lie algebra,
which are a natural generalisation of the Pauli matrices in (2.11), the Gell-Mann A-matrices
Ao, a=1,...,8,

010 0 —i 0 1 0 0 L (10 0
M=(10 0], =[i 0 o], M=[0 -1 0], A= 01 0],
000 0 0 0 0 0 0 V3o 0 —2
00 1 00 —i 000 00 0
M= (00 0], =[00 0], = 001), A7 = 00@)
100 i 0 0 010 0i 0

(6.110)
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These satisfy
tr()\a)\b) =20, (6.111)

and
[Aa; o] = 20 fapeAc , (6.112)

for totally antisymmetric structure constants, fgp.. In terms of the matrices defined in (6.27)
and (6.29) it is easy to see that e;4 = S(A\1 +iX2), ey = (X6 + A7), €34 = 5(A4 + iXs5)

and also \3 = hy, \g = %(h1 + 2hy).

The relation between SU(3) matrices and the A-matrices is in many similar to that for
SU(2) and the Pauli matrices, for an infinitesimal transformation the relation remains just
as in (2.28). (2.15) needs only straightforward modification while instead of (2.12) we now
have

AaXo = 2T + dape Ac + i fape Ac (6.113)

with dgp. totally symmetric and satisfying dgp, = 0.

6.5 SU(3) and Physics

Besides its virtues in terms of understanding more general Lie groups a major motivation
in studying SU(3) is in terms of its role in physics. Historically SU(3) was introduced, as
a generalisation of the isospin SU(2);, to be an approximate symmetry group for strong
interactions, in current terminology a flavour symmetry group, and the group in this con-
text is often denoted as SU(3)r. Unlike isospin, which was hypothesised to be an exact
symmetry for strong interactions, neglecting electromagnetic interactions, SU(3) is intrin-
sically approximate. The main evidence is the classification of particles with the same spin,
parity into multiplets corresponding to SU(3) representations. For the experimentally ob-
served SU (3)r particle multiplets, unlike for isospin multiplets, the masses are significantly
different.

For SU(3)Fr the two commuting generators are identified with I3, belonging to SU(2);,
and also the hypercharge Y, where [I;,Y] = 0 so that Y takes the same value for any
isospin multiplet. Y is related to strangeness S, a quantum number invented to explain
why the newly discovered, in the 1940’s, so-called strange particles were only produced in
pairs, the precise relation is Y = B + S, with B the baryon number. For any multiplet
we must have tr(l3) = tr(Y) = 0. Expressed in terms of the su(3) operators Hi, Ha,
Is = H,Y = %(Hl + 2H3). For SU(3)r multiplets the electric charge is determined by
Q=13+ %Y and so must be always conserved, but Y is not conserved by weak interactions
which are responsible for the decay of strange particles into non-strange particles.

For SU(3)r symmetry of strong interactions to be realised there must be 8 operators
satisfying the su(3) Lie algebra. If the same basis as for the A-matrices in (6.110) is adopted
then these are F,, a = 1,...,8, where F, are hermitian, and

[Fo, Fy) = ifapeFe F=I, 1=1,2,3, Fy=->Y. (6.114)

al-

From a more modern perspective SU(3)r is understood to be a consequence of the
fact that low mass hadrons are composed of the three light quarks ¢ = (u,d, s) and their
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anti-particles § = (, d, 5), corresponding to three quark flavours. These belong respectively
to the fundamental [1,0] and [0, 1] representations, more often denoted by 3 and 3*. On
a weight diagram these are the simplest triangular representations. With axes labelled by
I3,Y these are

213 ‘;

1 1
172 192 3 172 1j2 3

~@ - @
U 13 —

S

—2/3?

The charges of quarks are dictated by the requirement @@ = I3 + %Y and so for g are
fractional, % and —%, while for ¢ they are the opposite sign. We may further interpret the
quantum numbers in terms of the numbers of particular quarks minus their anti-quarks,
hence I3 = N, — Nz — Ng+ Ng and S = — N, + N3, where each ¢ has baryon number B = %
and each ¢, B = —%,

As is well known isolated quarks are not observed, they are present as constituents of
the experimentally observed mesons, which are generally gg composites, or baryons, whose
quantum numbers are consistent with a qqq structure. The associated representations have
zero triality, elements belonging to the centre 3(SU(3)) act trivially, or equivalently the
observed representations correspond to the group SU(3)/Zs.

For the mesons we have self-conjugate octets belonging to the [1, 1], or 8, SU(3) repre-
sentations. The weight diagram for the lightest spin-0 negative parity mesons is

Here the kaons K1, K? and K°, K~ are I = % strange particles with S =1 and S = —1.
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A similar pattern emerges for the next lightest spin one negative parity mesons.

Mass(Mev) | I 0
R <@ e
1/,

770 P pd pr
% o

783  SI"EE :‘*’ ,,,,,, e -

,,,,,,,,,,,,,,,,,,,,,,,,, 1% R A T T O O

B LT o0

. Q@ KO

82 <@ Ok T

The lightest multiplet of spin—% baryons is also an octet, with a similar weight diagram, the
same set of I3, Y although of course different particle assignments.

Mass(Mev) |
‘939 ﬁ‘ ' ‘ prr
,,,,,,,,,,,,,,,,,,,,,,,,, 1/, SR R O R S B
11935 5 2l

@ z 5 @ l;
1116 LI N v
,,,,,,,,,,,,,,,,,,,,,,,,, =1/ D R R R A A
, ,,,,,,,,,,,,,,,,,,,,,,,, — o=l :{-, ,,,,,,,,,,,,,,,,,,,,,,,,,,,
s O ®-

The novelty for baryons is that there are also decuplets, corresponding to the [3, 0] and [0, 3]
representations, or labelled by their dimensionality 10 and 10*. The next lightest spin—%
baryons and their anti-particles belong to decuplets.
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Except for the €2~ the particles in the decuplet are resonances, found as peaks in the
invariant mass distribution for various cross sections. Since mz= + mg > mq- the Q7 can
decay only via weak interactions and its lifetime is long enough to leave an observable track.

6.5.1 SU(3)r Symmetry Breaking

Assuming quark masses are not equal there are no exact flavour symmetries in strong
interactions, or equivalently QCD, save for a U(1) for each quark. Even isospin symmetry
is not exact since m,, # mq. Restricting to the three light ¢ = (u,d, s) quarks the relevant
QCD mass term may be written as

Lo = — My G — mgdd — mg §s
= —maq— %(mu —mg) GA3q — Q—bg(mu + mg — 2ms) GAsq, (6.115)

for m = %(mu + mgq + mg). If the difference between m,, mg is neglected then the strong

interaction Hamiltonian must be of the form
H=Hy+1Tg, (6116)

where Hj is a SU(3) singlet and Ty is part of an octet of operators {7, } so that, with the
SU(3) operators {F,} as in (6.114), we have the commutation relations [F,, Hy] = 0 and
[Fo, Ty = ifapcTe. The Hamiltonian in (6.116) is invariant under isospin symmetry since
[I;, Tg] = 0.

In any SU(3) multiplet the particle states may be labelled |I13,Y") for various isospins I
and hypercharges Y, depending on the particular representation. For Is = —I,—I1+1,...,1
the vectors |II3,Y’) form a standard basis under SU(2);. With isospin symmetry the particle
masses are independent of I3 and to first order in SU(3) symmetry breaking

mry :m0+<_[[3,Y‘T8|I_[3,Y>. (6.117)

It remains to determine a general expression for (II3,Y|Ts|II3,Y), which is essentially
equivalent to finding the extension of the Wigner-Eckart theorem, described in section 2.9,
to SU(3).
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Instead of finding results for SU(3) Clebsch-Gordan coefficients the necessary calculation
may be accomplished, in this particular case, with less effort. It is necessary to recognise that
the crux of the Wigner-Eckart theorem is that, as far as the I, Y dependence is concerned,
(I13,Y|Ts|I15,Y) is determined just by the SU(3) transformation properties of Ts. Hence,
apart from overall undetermined constants, Ty may be replaced by any other operator with
the same transformation properties. For convenience we revert to a tensor basis for the
octet T, — T%;, T'; = 0, and then with F, — R’; as in (6.33),

(R, TF ] = 6% T — 67 TF;,  To=5(T" + 1% —27%). (6.118)

This ensures that 7%; is a traceless (1,1) irreducible tensor operator. Any such tensor
operator constructed in terms of R’; has the same SU(3) transformation properties. The
simplest case is if 7%; = R’; when (6.118) requires

Ty = 3(Hi +2H) =Y, (6.119)

with Y the hypercharge operator. An further independent (1,1) operator is also given by
the quadratic expression T = %(RikRk i+ RF RY) — %51] R*,R';. which then leads to

Ty = L(RUGWRM + BE RY + ROGREy + BRB2, — B3R — RRY) — 1O, (6.120)

where C' is the SU(3) Casimir operator defined in (6.92). Using (6.33) then

Ty = LBy B + BBy + 1HP) — & (Hy +2H,)° — L C
=L -1y*-1C, (6.121)

with I; the isospin operators and (6.25) has been used for the SU(2); Casimir operator.
For a 3 x 3 traceless matrix R, R® — 1Itr(R3) = LRtr(R?) so that there are no further

independent cubic, or higher order, traceless (1, 1) tensor operators formed from Ri e

The results of the Wigner-Eckart theorem imply that, to calculate (I13,Y|Tg|I13,Y),
it is sufficient to replace Tg by an arbitrary linear combination of (6.119) and (6.121).
Absorbing an I, Y independent constant into mg and replacing the operators I;I; and Y by
their eigenvalues this gives the first order mass formula

mry =mg+aY +b(I(I+1)—1v?), (6.122)
with a, b undetermined coefficients.

For the baryon octet (6.122) gives 2(my + mz) = 3myx + my, which is quite accurate.
For the decuplet the second term is proportional to the first so that the masses are linear
in Y, again in accord with experimental data. For mesons, for various reasons, the mass
formula is applied to m?, so that 4m[2( =3m2+ mg

6.5.2 SU(3) and Colour

The group SU(3) plays a more fundamental role, other than a flavour symmetry group,
as the gauge symmetry group of QCD. Each quark then belongs to the three dimensional
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fundamental, 3 or [1,0], representation space for SU(3)colour SO that there is an additional
colour index r = 1,2,3 and hence, for each of the six different flavours of quarks ¢ =
u,d, s,c,b,t in the standard model, we have ¢". The antiquarks belong to the conjugate, 3*
or [0, 1], representation space, ¢,. The crucial assumption, yet to be fully demonstrated, is
that QCD is a confining theory, the states in the physical quantum mechanical space are
all colour singlets. No isolated quarks are then possible and this matches with the observed
mesons and baryons since the simplest colour singlets are just

q1rge Erst 1508 - (6.123)

Baryons are therefore totally antisymmetric in the colour indices. Fermi statistics then
requires that they should be symmetric under interchange with respect to all other variables,
spatial, spin and flavour. This provides non trivial constraints on the baryon spectrum which
match with experiment. The additional colour degrees of freedom also play a role in various
dynamical calculations, such as the total cross section for e~e™ scattering or 7% — v decay.

6.6 Tensor Products for SU(3)

Just as for angular momentum it is essential to be able to decompose tensor products
of SU(3) representations into irreducible components in applications of SU(3) symmetry.
Only states belonging to the same irreducible representation will have the same physical
properties, except for dynamical accidents or a hidden addition symmetry.

For small dimensional representations it is simple to use the tensor formalism described
in section 6.4 with irreducible representations characterised by symmetric traceless tensors
as in (6.108). Thus for the product of two fundamental representations it is sufficient to
express it in terms of its symmetric and antisymmetric parts

gl g = SU 4%, ST =qllq)), G = lepjalad . (6.124)

while for the product of the fundamental and its conjugate it is only necessary to separate
out the trace

G¢ =M +88, M =g¢ -l ad", S=1ad. (6.125)
These correspond respectively to
33=633", 3F®3=841. (6.126)

For the product of three fundamental representations then the decomposition may be ex-
pressed in terms of an irreducible (3,0) tensor, two independent (1,1) tenors and a singlet

gt ¢ qf = DY + Eilelj + Ejlef + EiﬂB'f + kg
D% = 0 g ¢, S=2enal ¢ af,
Bl =teimaled) ¢f, Bf=lejiaiadaf —oFS. (6.127)
To verify that this is complete it is necessary to recognise, since the indices take only three

values, that - o - -
eV BF 4+ MB] + &M B} = kBl =0, (6.128)

122



for any Bj"- belonging to the 8 representation. (6.127) then corresponds to
33®3=109808d1. (6.129)

These of course are the baryon representations for SU(3)p.

In general it is only necessary to use the invariant tensors in (6.107) to reduce the tensor
products to irreducible tensors. Thus for the product of two octets the irreducible tensors
are constructed by forming first the symmetric (2,2), (3,0), (0,3) tensors as well as two
(1,1) tensors and also a singlet by

BiBk - Bip®  lmpip®) o pipk  pipd Bipd. BB, (6.130)
7 l G20 i ik(mP552 1) j 1> j IR j i .
and then subtracting the required terms to cancel all traces formed by contracting upper
and lower indices, as in (6.125). This gives the decomposition

8R8=27210010"©8® 8D 1. (6.131)

6.6.1 Systematic Discussion of Tensor Products

For tensor products of arbitrary representations there is a general procedure which is quite
simple to apply in practice. The derivation of this is straightforward using characters to find
an algorithm for the expansion of the product of two characters for highest weight irreducible
representations as in (1.47). For su(3), characters are given by (6.82). In general these have
an expansion in terms of a sum over the weights in the associated weight diagram

Xa(w) =D my w2 A = [y n), A= [y, (6.132)
A

where ny » is then the multiplicity in the representation space Va for vectors with weight
A. Due to the symmetry of the weight diagram under the Weyl group we have

A, A = A 00 (6.133)
Using (6.81) it is easy to see that
Cp(w) xar(u) =Y mprx Cppa(u), (6.134)
A

and since, for the weights {\} corresponding to the representation with highest weight A,
{A}={od}, (A+X)7=A+0), (6.135)

then, with (6.133), we may use (6.87) to obtain

Xa (@) xar(w) = Y npr x Xp () (6.136)
A
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However in general A + A ¢ W, as defined in (6.59). In this case (6.89) may be used to
rewrite (6.136) as

XA(U) XA/(U) = ZnA/7APU X(A""A)J ('LL) ) (A + A)U S W, (6137)
A

dropping all terms where A+ satisfies any of the conditions in (6.90) ensuring x . ,(u) =0,
so that, by virtue of (6.91), o in (6.137) is then unique. Since in (6.137) some terms may
now contribute with a negative sign there are then cancellations although the final result is
still a positive sum of characters.

The result (6.137) may be re-expressed in terms of the associated representation spaces.
For a highest weight A the representation space V5 has a decomposition into subspaces for
each weight,

vi=@vyY. dmvy =n, ,, (6.138)
A
and then (6.137) is equivalent to
Vy @V ~EP npry PoViagnyr s (A+X2)7 €W, (6.139)
A

This implies the corresponding decomposition for the associated representations.

As applications we may consider tensor products involving V|, g which has the weight
decomposition
Vo — [1,0], [-1,1], [0, 1], (6.140)

and then

Vingna] @ V11,0 = Vi +1,n2] © Vi~ 1,241 © Vingna—1]

= V[I»M] ® V[Oﬂw—l] ’ n =0, (6.141)
Vini+1,00 ® Viny-1,17, n2=0.
It is easy to see that this is in accord with the results in (6.129). For an octet
Vo — (1,1], [2,-1], [-1,2], (0,012, [1,-2], [-2,1], [-1,-1], (6.142)
so that, for ny,ne > 2,
Vinana) @ Vi1,1] = Vini+1,n0+1] © Vina+2,n0-1] @ Ving—1,n5+2] © Vi ns)
D V[nl’n2] & V[n1+1:”2*2] ® V[n1*27n2+1} D V[nlfl,nzfl] ) (6143)
with special cases
Vi) @ Vi1 = Vig,2) © Vi) © Vio,s) © Vi) © Vi) @ Voo » (6.144)
which is in accord with (6.131), and
V3,00 © Vi) = Vi) © Vigg) © Viz0) © Vi (6.145)

using Vg _g) =~ —Vj30]- Equivalently, labelling the representations by their dimensions

1098=350270 100 8. (6.146)
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7 Gauge Groups and Gauge Theories

Gauge theories are fundamental to our understanding of theoretical physics, many successful
theories such as superconductivity and general relativity are best understood in terms of
an appropriate gauge symmetry and its implementation. High energy particle physics is
based on quantum gauge field theories. A gauge theory is essentially one where there are
redundant degrees of freedom, which cannot in general be eliminated, at least without
violating other symmetries that are present. The presence of such superfluous degrees of
freedom requires a careful treatment when gauge theories are quantised and a quantum
vector space for physical states is constructed. If the basic variables in a gauge theory are
denoted by ¢ then gauge transformations ¢ — ¢9, for g € G for some group G, are dynamical
symmetries which define an equivalence ¢ ~ g9. The objects of interest are then functions of
q which are invariant under G, in a physical theory these are the physical observables. For
a solution ¢(t) of the dynamical equations of motion then a gauge symmetry requires that
q*M(t) is also a solution for arbitrary continuously differentiable g(t) € Gy ~ G. For this to
be feasible G must be a Lie group, group multiplication is defined by g(¢)¢'(t) = g¢'(t) and
the full group of gauge transformations is then essentially G ~ ®;Gy. A gauge theory in
general requires the introduction of additional dynamical variables which form a connection,
depending on t, on Mg and so belongs to the Lie algebra g.

For a relativistic gauge field theory there are vector gauge fields, with a Lorentz index
A, (z), belonging to g. Denoting the set of all vector fields, functions of x and taking values
in g, by A, we can then write

A, e A. (7.1)
In a formal sense, the gauge group G is defined by

G~ G., (7.2)

i.e. an element of G is a map from space-time points to elements of the Lie group G (the
definition of G becomes precise when space-time is approximated by a lattice). Gauge
transformations act on the gauge fields so that

A, (x) = AID () ~ Ay(z). (7.3)

Gauge transformations g(x) are then the redundant variables and the physical space is
determined by the equivalence classes of gauge fields modulo gauge transformations or

A/G. (7.4)
If A,(x) is subject to suitable boundary conditions as |z| — oo, or we restrict x € M for

some compact M, then this is topologically non trivial.

The most significant examples of quantum gauge field theories are?!,

Theory: QED WEINBERG-SALAM model QCD,
Gauge Group: U(1) SU2)®U(1) SU(3).

2Steven Weinberg, (1933-), American. Abdus Salam, (1926-1996), Pakistani. Nobel Prizes 1979.
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Renormalisable gauge field theories are almost uniquely determined by specifying the gauge
group and then the representation content of any additional fields.

7.1 Abelian Gauge Theories

The simplest example arises for G = U(1), which is the gauge group for Maxwell?? electro-
magnetism, although the relevant gauge symmetry was only appreciated by the 1920’s and
later. For U(1) the group elements are complex numbers of modulus one, so they can be
expressed as €', 0 < o < 27. For a gauge theory the group transformations depend on x
so we can then write ¢?*(*). The representations of U (1) are specified by ¢ € R, physically
the charge, so that for a complex field ¢(z) the group transformations are

¢ — €% =g (7.5)
e’LQ
If the field ¢ forms a non projective representation we must have
qeZ={0,£1,£2,...}. (7.6)

In quantum mechanics this is not necessary but if the U(1) is embedded in a semi-simple
Lie group then, with a suitable convention, ¢ can be chosen to satisfy (7.6). For U(1) the
multiplication of representations is trivial, the charges just add, and also under complex
conjugation ¢ — —q. It is then easy to construct lagrangians L4 which are invariant under
(7.5) for global transformations, where « is independent of x. Restricting to first derivatives
this requires

L(h,0u0) = Lo(¢',0ud) , (7.7)

and an obvious solution, which defines a Lorentz invariant theory for complex scalars ¢, is
then

Ly(9,0u0) = 0" ¢ ¢up = V(9*9) . (7.8)

For local transformations, when the elements of the gauge group depend on x, the initial
lagrangian is no longer invariant due to the presence of derivatives since

9" = el (Oﬂqb +iq0, gb) , (7.9)

and the J,a terms fail to cancel. This is remedied by introducing a connection, or gauge
field, A, and then defining a covariant derivative on ¢ by

Dyt = 06 — iqAud. (7.10)

If under a local U(1) gauge transformation, as in (7.5), the gauge field transforms as

Ay — A+ uor= Ay, (7.11)
so that '
D’Hgi)’ =e""D,o, (7.12)

22James Clerk Maxwell, 1831-79, Scottish, second wrangler 1854.
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and then it is easy to see that, for any globally invariant lagrangian satisfying (7.7),

Ly (d), Duqb) =Ly (d)’, D,¢"). (7.13)

It is important to note that for abelian gauge theories A4,, ~ A’,, which corresponds precisely
to the freedom of polarisation vectors in (4.197) when Lorentz vector fields are used for
massless particles with helicities £1.

The initial scalar field theory then includes the gauge field A,, as well as the scalar
fields ¢, both gauge dependent. For well defined dynamics the scalar lagrangian £, must
be extended to include an additional gauge invariant kinetic term for A,. In the abelian
case it is easy to see that the curvature

Fu = 0,4, — 0,A, = F, | (7.14)

is gauge invariant, since 0,0, = 9,0, In electromagnetism F),,, decomposes in to the
electric and magnetic fields and is related to the commutator of two covariant derivatives
since

Dy, D)) = —iqFu¢. (7.15)
The simplest Lorentz invariant, gauge invariant, lagrangian is then
1
L= 'Cgauge + ng (¢, DMQS) ; Lgauge = *@ F'MVFMV y (716)

with e an arbitrary parameter, unimportant classically. It is commonplace to rescale the
fields so that
A, —eA,, D¢ = 0,0 —ieqA,d, (7.17)

so that e disappears from the gauge field term in (7.16). The dynamical equations of motion
which flow from (7.16) are, for the gauge field,

1 . 0
B O) auFMV =Jv= _w['(b((ﬁ’ Du¢) ) (718)

which are of course Maxwell’s equations for an electric current j, and e becomes the basic
unit of electric charge. A necessary consistency condition is that the current is conserved
0" j, = 0. In addition F},, satisfies an identity, essentially the Bianchi identity, which follows
directly from its definition in (7.14),

0uFpy + 0y Fop + 0, Fy = 0. (7.19)

In the language of forms, A = A,dz*, F = %FW dxz* A dz” = dA, this is equivalent to
dF = d?A = 0.

7.2 Non Abelian Gauge Theories

In retrospect the generalisation of gauge theories to non abelian Lie groups is a natural
step. A fully consistent non abelian gauge theory was first described in 1954, for the group
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SU(2), by Yang and Mills?® so they are often referred to, for the particular gauge invariant
lagrangian generalising the abelian lagrangian given in (7.16) and obtained below, as Yang-
Mills theories. Nevertheless the same theory was also developed, but not published, by
R. Shaw?* (it appeared as an appendix in his Cambridge PhD thesis submitted in 1955
although this work was done in early 1954). Such theories were not appreciated at first
since they appeared to contain unphysical massless particles, and also since understanding
their quantisation was not immediate.

Following the same discussion as in the abelian case we first consider fields ¢ belonging
to the representation space V for a Lie group G. Under a local group transformation then

¢(x) st 9(z)¢(z) = ¢'(x), (7.20)
for g(x) € R for R an appropriate representation, acting on V, of G. Manifestly derivatives
fail to transform in the same simple homogeneous fashion since

Oud(x) — 9(2)(0u0(2) + g(2) " Dug(2) $(x)) = ¢/ (x), (7.21)

g(x)

where g_lc?ug belongs to the corresponding representation of the Lie algebra of G, g, which
is assumed to have a basis {¢,} satisfying the Lie algebra (5.60). As before to define a
covariantly transforming derivative D, it is necessary to introduce a connection belonging
to this Lie algebra representation which may be expanded over the basis matrices ¢,,

Ay(x) = A%(x) ta, (7.22)
and then
Dy = (0 + 4,9 (7.23)
Requiring
D¢ =gDué, (7.24)
or
g AL g+ 9 09 = Ay, (7.25)

then the gauge field must transform under a gauge transformation as

Y= Ougg = gAug +g0ug " (7.26)

Ay 7 A/u =g9A.9"
Hence if L4(¢,0,¢) is invariant under global transformations ¢ — g¢ then Ly(p, D,,¢) is
invariant under the corresponding local transformations, so long as A,, also transforms as
in (7.26).

It is also useful to note, since G is a Lie group, the associated infinitesimal transforma-
tions when

=T+X, A=)\t,. (7.27)

23Chen-Ning Franklin Yang, 1922-, Chinese then American, Nobel prize 1957. Robert L. Mills, 1927-99,
American.

24Ron Shaw, 1929-, English.
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Then from (7.20) and (7.24), for arbitrary \*(z),
0p = Ao, D¢ = ADyo, (7.28)
and from (7.26)
SA,=[NA -0 = §A% = — [ ALNC — 9", (7.29)

The associated curvature is obtained from the commutator of two covariant derivatives,
as in the abelian case in (7.15), which gives

[D,ua Du]¢ = F,ul/¢> F,uu = Fa,uz/ta s (7.30)
so that
Fu = 0,A, — 0, A, + [Au, AL, (7.31)
or
Faul/ = 8uAaV - 81/Aau + fabc AbuAcV . (732)

Unlike the abelian case, but more akin to general relativity, the curvature is no longer linear.
The same result is expressible more elegantly using differential form notation by

F=dA+ANA, A=A,da", ANA=3[A,A)da" Ada”. (7.33)

For a gauge transformation as in (7.26)

F;w ? F,;w = gF;w g_l ) (7'34)

or, infinitesimally,
5Fu = [\ Fu) = SF%,, = — f%Fb, %, (7.35)
which are homogeneous.

As a consistency check we verify the result (7.35) for 6%, from the expression (7.32)
using (7.29) for §A%,. First

§(0u A% — 0, A%) = — [%e(0,A% — 0, AB)N — % (A% 0,0 — A%0,X°) . (7.36)

Then
5(f%e A%AS) |5y = —Fhe(0uA A, + AL0,X°) (7.37)

which cancels, using (5.39), the OA terms in (7.36). Furthermore
5(fabc Abp,ACI/) ‘)\ = = fabc(fbdeAAdp,)\6 A5+ Abu CdeAdl/)\e)
= - (fafdffbe + facfffbe)AbuAduAe = _fafe ffbdAb,uAdV A€ ’ (738)
by virtue of the Jacobi identity in the form (5.43). Combining (7.36), (7.37) and (7.38)

demonstrates (7.35) once more.
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The gauge fields A%, are associated with the adjoint representation of the gauge group
G. For any adjoint field ®“t, then the corresponding covariant derivative is given by

D@ =0,0+[A,, 0 = (D) =09,0+ f% A% P°. (7.39)

This is in accord with the general form given by (7.23), with (7.22), using (5.180) for the
adjoint representation generators. Note that (7.29) can be written as §A%, = —(D,\)* and
for an arbitrary variation §A%, from (7.32),

OF%, = (DuoA,)* — (Dy6AL)". (7.40)

From the identity
([Duss [Dy, Dy]] + [Dy, [Des, Dyll + [Dyis [Dy, D]} 6 = 0, (7.41)
for any representation, we have the non abelian Bianchi identity, generalising (7.19),
DuFuy + DyFyy+ DyFoy =0, (7.42)

where the adjoint covariant derivatives are as defined in (7.39). Alternatively with the
notation in (7.33)
dF +AANF-FANA=0. (7.43)

To construct a lagrangian leading to dynamical equations of motion which are covariant
under gauge transformations it is necessary to introduce a group invariant metric gqp = Gpa,
satisfying (5.195) or equivalently

gdbfdca + gadfdcb =0, (744)

which also implies, for finite group transformations g and with X,Y belonging to the asso-
ciated Lie algebra,
9ab (9X 97" (9Y 97" = gap X“Y". (7.45)

If X, Y are then adjoint representation fields the definition of the adjoint covariant derivative
in (7.39) gives
9 (9ab X°Y?) = gap (DL X)*Y? + X*(D,Y)"), (7.46)

in a similar fashion to covariant derivatives in general relativity.

The simplest gauge invariant lagrangian, extending the abelian result in (7.16), is then,
as a result of the transformation properties (7.34) or (7.35), just the obvious extension of
that proposed by Yang and Mills for SU(2)

1
Lym = 1 G P F,, (7.47)

It is essential that the metric be non degenerate det[g,s] # 0, and then using (7.40) requiring
the action to be stationary gives the gauge covariant dynamical equations

(D"F,)* =0. (7.48)
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These equations, as well as (7.42) and unlike the abelian case, are non linear. As described
before a necessary consequence of gauge invariance is that if A, is a solution then so is
any gauge transform as in (7.26) and hence the time evolution of A, is arbitrary up to this
extent, only gauge equivalence classes, belonging to (7.4), have a well defined dynamics. If
the associated quantum field theory is to have a space of quantum states with positive norm
then it is also necessary that the metric g4, should be positive definite. This requires that
the gauge group G should be compact and restricted to the form exhibited in (5.202). Each
U(1) factor corresponds to a simple abelian gauge theory as described in 7.1. If there are
no U(1) factors G is semi-simple and g, is determined by the Killing form for each simple
group factor. For GG simple then by a choice of basis we may take

1
Gab = ? 6ab ) (749)

with g the gauge coupling. For G a product of simple groups then there is a separate
coupling for each simple factor, unless additional symmetries are imposed.

If the condition that the metric g, be positive definite is relaxed then the gauge group
GG may be non compact, but there are also examples of non semi-simple Lie algebras with
a non-degenerate invariant metric. The simplest example is given by the Lie algebra iso(2)
with a central extension, which is given in (5.136). Choosing T}, = (E1, Ea, J3, 1) then it is
straightforward to verify that

[gab) = , (3 arbitrary , (7.50)

oo o+
o o= O
o oo
S0 OO

is invariant. The Killing form only involves the matrix with the element proportional to 3

non zero. Since it is necessary that ¢ # 0 for the metric to be non-degenerate the presence

of the central charge in the Lie algebra is essential. For any 3 it is easy, since det[gq] = —c2,

to see that [gs] has one negative eigenvalue.

An illustration of the application of identities such as (7.46) is given by the conservation
of the gauge invariant energy momentum tensor defined by

TH = gop(F*#oFY, — Lgrvpaor gty | (7.51)
Then

3, T", = gup (D, F*)*FY,, + F (D, F,,)" — LFOP(D, F,,)?)
= gab(DpF")* = L9 F*?((DyFue)’ — (Do Fyp)’ + (Dy Fyp)P)
= gap(DpF"7)" (7.52)

using the Bianchi identity (7.42). Clearly this is conserved subject to the dynamical equation
(7.48).
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7.2.1 Chern-Simons Theory

The standard gauge invariant lagrangian is provided by (7.47). However in order to obtain
a gauge invariant action, given by the integral over space-time of the lagrangian, it is only
necessary that the lagrangian is invariant up to a total derivative. This allows for additional
possibility for gauge field theories, with gauge group G a general Lie group, in three space-
time dimensions, termed Chern-Simons®® theories.

First we note that in four dimensions the Bianchi identity (7.42) may be alternatively
be written using the four dimensional antisymmetric symbol as

P D, Fpp = 0. (7.53)

Apart from (7.47) there is then another similar gauge invariant and Lorentz invariant

i Ml gy F Fly (7.54)
which may be used as an additional term in the lagrangian. However the corresponding
contribution to the action is odd under x — —x or t — —t. Such a term does not alter the
dynamical equations since its variation is a total derivative and thus the variation of the
corresponding term in the action vanishes. To show this under arbitrary variations of the
gauge field we use (7.40) and (7.53) to give

1
51 sﬂ’wpgabF“WFbap = 5””””gab(DM5A,,)“Fbap =0y (s’wgf’gab 0A%, Fbap) . (7.55)
This allows us to write ]
1 ewgpgabFaWFbgp = Ouw", (7.56)
where
wh = e"Pgu, (A% 0, A% + & fhg A% A AY) (7.57)

since this has the variation
Swh = el gy, (5A% 0, A + A% 0,0 A%, + fhq 6 A% A% A%)
= Euuopgab 80 (Aau(SAbp) + Euuapgab 5A’4au (280Abp + fbchcoAdp)
= Mgy, 0, (6 A% AY)) + 7P goy S A% FY, (7.58)

using that gqpf%q is totally antisymmetric as a consequence of (7.44). The result is then in
agreement with (7.55).

If the variation is a gauge transformation so that

A, — A, = Wt — W' (7.59)
g g

then since (7.56) is gauge invariant we must require

Oyt = 9wt (7.60)

258hiing-Shen Chern, 1911-2004, Chinese, American after 1960. James Harris Simons, 1938-, American.
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This necessary condition may be verified for an infinitesimal gauge transformation by setting
dA% = —(Dy,\)® in (7.58) which then gives, using the Bianchi identity (7.53) again,
owt = —ePqu 81,((DC,/\)“Abp) —e"™Pq (D,,/\)anop
= el Pgap Oy (AG(DUA)bp — )\anUp)
= — Mg 0, (N\"05A%) . (7.61)

Hence it is evident that the result in (7.61) satisfies

80wt = 0. (7.62)

In three dimensions the identities for w” may be applied to
'CCS = 8I/Upgab (AauaoAbp + %fbchauAcaAdp) 5 (763)

which defines the Chern-Simons lagrangian for gauge fields. For an infinitesimal gauge
transformation, by virtue of (7.61), Lcg becomes a total derivative since

§A% = —(D,N)* =  6Los = —€""Pga 0, (A0, AY) (7.64)

so that the corresponding action is invariant. Under a general variation

(5/d3x Log = /dgzc " gap (5Aal,Fbgp, (7.65)
so that the dynamical equations are
Fe, =0, (7.66)

so the connection A, is ‘flat’ since the associated curvature is zero (Cherns-Simons theory is
thus similar to three dimensional pure gravity where the Einstein equations require that the
Riemann curvature tensor vanishes). In a Chern-Simons theory there are no perturbative
degrees of freedom, as in the case of Yang-Mills theory, but topological considerations play
a crucial role.

Topology also becomes relevant as the Chern-Simons action is not necessarily invariant
under all gauge transformations if they belong to topological classes which cannot be con-
tinuously connected to the identity. To discuss this further it is much more natural again
to use the language of forms, expressing all results in terms of A(x) = A% (z)t, dz* a Lie
algebra matrix valued connection one-form, [ts, %] = fpte as in (5.60), and replacing the
group invariant scalar product by the matrix trace. For any set of such Lie algebra matrices
{X1,...,X,} the trace tr(X; ... X,) is invariant under the action of adjoint group trans-
formations X, — ¢gX,g~! for all 7. Since the wedge product is associative and the trace is
invariant under cyclic permutations we have

tr(ANA--AA) =tr((AA 71/\ A NA) = (=) Hr(ANA (AN 71/\ A))

=0 for n even. (7.67)

133



The Chern-Simons theory is then defined in terms of the three-form
=tr(ANdA+2ANANA) =tr(ANF —LANANA), (7.68)
with the two-form curvature F' as in (7.33). It is easy to see that
dw=tr(dAANdA+2dANANA) =tr(FAF), (7.69)
which is equivalent to (7.56) and (7.57). For a finite gauge transformation
A =gAgt+gdg7t, F' =gFg !, (7.70)
so that, from (7.68),

w—w—i—tr(dg Lyn(F - A/\A) (dgilg/\dgflgAA)

tr(dg Lyndg tgndg™ q). (7.71)

Using
dg~lg=—g'dg, d(¢'dg) =—-g 'dgAg'dg, (7.72)

we get
W =w+ dtr(g_ldg A A) + %tr(g_ldg A g tdg A g_ldg) . (7.73)

In this discussion g~ 'dg is unchanged under ¢ — gog, for any fixed gy, and so defines a
left invariant one-form. If " are coordinates on the associated group manifold Mg then
g~ 1(b)dg(b) = w(b)t, where w®(b) are the one forms defined in the general analysis of Lie
groups in (5.48).

Since, using (7.72),
dtr(g_ldg A g tdg A g_ldg) = —tr(g_ldg Agtdg A g tdg A g_ldg) =0, (7.74)

by virtue (7.67), we have
do' = dw, (7.75)

which is equivalent to (7.60). However although tr(gfldg A g~ tdg A gildg) is therefore a
closed three-form it need not be exact so that its integration over a three manifold M3 may
not vanish, in which case we would have

/ W' w, (7.76)
Ms Ms

for some g(z). The Cherns-Simons action is not then gauge invariant for such gauge trans-
formations g.

To discuss
I= /M %tr(g_ldg Agidg A g_ldg) , (7.77)
3

we note that for a variation of g, since
(g 'dg) =g 'd(dgg ) g, (7.78)
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then
0 % tr(g_ldg A g tdg A g_ldg) = tr(d(ég g HAndgg™t Adg g_l)
= dtr(égg*1 Adgg! /\dggfl) , (7.79)
since d(dgg=t Adgg™!) = —d?(dgg~!) = 0. Hence, for arbitrary smooth variations dg,
SI=0, (7.80)

so that I is a topological invariant, only when g(x) can be continuously transformed to the
identity must I = 0.

If we consider g(6) € SU(2) with coordinates 6", r = 1,2, 3 then

%tr(g_ldg A g ldg A g_ldg) = p(0)d%0, (7.81)
(
(

7.81) is defined in terms of the left invariant Lie algebra one
0) we have

p(0)d30 = p(h)d30. (7.82)

The integration measure in
forms so that for g(8’) = gog

Up to a sign, depending just on the sign of det[d’"/06%], this is identical with the re-
quirements for an invariant integration measure described in section 5.7. To check the
normalisation we assume that near the origin, @ =~ 0, then ¢(f) ~ I + io - 8 and hence

%tr(g_ldg A g tdg A g_ldg) R~ %i?’ tr(a’ -dO Ao -dONOT - dO)
= 2e;j,d0" AdOT A dOF = 4d%, (7.83)

assuming (5.21) and standard formulae for the Pauli matrices in (2.12) with (2.14). Thus
p(0) = 4 and the results for the group integration volume for SU(2) in (5.155) then imply,
integrating over Mgy (g) =~ S3,

/ %tr(gildg Ag ldgAgldg) = 8n”. (7.84)
My (2)

In general the topological invariant defined by (7.77), for a compact 3-manifold M3,
corresponds to the index of the map defined by g(x) from Ms to a subgroup SU(2) C G,
i.e. the number of times the map covers the SU(2) subgroup for x € Ms. The result (7.84)
then requires that in general

I=8r?n for necZ. (7.85)

In the functional integral approach to quantum field theories the action only appears in
the form e¢**. In consequence S need only be defined up to integer multiples of 2. Hence
despite the fact that the action is not invariant under all gauge transformations a well
defined quantum gauge Chern-Simons theory is obtained, on a compact 3-manifold M3, by
employing as the action

k
Scg = — tr(ANdA+ZANANA), kelZ, (7.86)
47 Ms
so that, unlike Yang-Mills theory, the coupling is quantised. There is no requirement for k
to be positive, the cubic terms become effectively small, and the theory is weakly coupled,

when k is large.
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7.3 Gauge Invariants and Wilson Loops

Only gauge invariant quantities have any significance in gauge field theories. Although
it is necessary in non abelian gauge theories to solve the dynamical equations for gauge
dependent fields, or in a quantum theory, to integrate over the gauge fields, only for gauge
invariants is a well defined calculational result obtained. For abelian gauge theories this is
a much less significant issue. The classical dynamical equations only involve F},, which is
itself gauge invariant, (7.14). However even in this case the associated quantum field theory,
QED, requires a much more careful treatment of gauge issues.

For a non abelian gauge theory F), = F'9,t, is a matrix belonging to a Lie algebra
representation for the gauge group which transforms homogeneously under gauge transfor-
mations as in (7.34). The same transformation properties further apply to products of F’s,
at the same space-time point, and also to the gauge covariant derivatives Dy, ... Dy, Fj,.
Since [Dq, Dg|Fu = [Fag, Fjuw) the indices ay, ..., a, may be symmetrised to avoid linear
dependencies. A natural set of gauge invariants, for pure gauge theories, is then provided by
the matrix traces of products of F’s, with arbitrarily many symmetrised covariant deriva-
tives, at the same point,

tr(Dayy - - - Dayy, Fuys Dasy - -+ Doy Fusws - -+ Doy + - - Doy, Fur,) - (7.87)

QA2rg

Such matrix traces may also be further restricted to a trace over a symmetrised product
of the Lie algebra matrices, since any commutator may be simplified by applying the Lie
algebra commutation relations, and also to just one of the s invariants, in the above example,
related by cyclic permutation as the traces satisfy tr(X; ... X;) = tr(Xs Xy ... Xs_1). If the
gauge group G has no U(1) factors then tr(¢,) = 0. The simplest example of such an
invariant then involves just two F’s, which include the energy momentum tensor as shown
in (7.51). In general there are also derivative relations since

Outr(X1... Xy) =Y tr(X1... DX; ... X,). (7.88)
=1

However, depending on the gauge group, the traces in (7.87) are not independent for
arbitrary products of F’s, even when no derivatives are involved. To show this we may

consider the identity
det(] — X) = enU=X) (7.89)

which is easy to demonstrate, for arbitrary diagonaliseable matrices X, since both sides
depend only on the eigenvalues of X and the exponential converts the sum over eigenvalues
provided by the trace into a product which gives the determinant. Expanding the right
hand side gives

det(I — X) = e~ oz f(X7)/r
=1 — tr(X) + 5 (t2(X)* — tr(X?)) — §(tr(X)* = Btr(X)tr(X?) + 2tr(X7)) +... . (7.90)

If X is a N x N matrix then det(I — X) is at most O(X") so that terms which are of higher
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order on the right hand side must vanish identically?S. If N = 2 this gives the relation
tr(X?) = 3 tr(X) tr(X?) — L tr(X)?, (7.91)
and if N = 3, and also we require tr(X) = 0, the relevant identity becomes
tr(X?) = L tr(X?)2. (7.92)
In general tr(X™) when n > N is expressible in terms of products of tr(X?®) for s < N.

For G = SU(N) and taking t, to belong to the fundamental representation these results
are directly applicable to simplifying symmetrised traces appearing in (7.87) since the results

for tr(X™) are equivalent to relations for tr(f(g, - . t4y))-

7.3.1 Wilson Loops

The gauge field A, is a connection introduced to ensure that derivatives of gauge dependent
fields transform covariantly under gauge transformations. It may be used, as with connec-
tions in differential geometry, to define ‘parallel transport’ of gauge dependent fields along a
path in space-time between two points, infinitesimally for  — z+dx this gives dz* D, ¢(z),
where ¢ is a field belonging to a representation space for the gauge group G and D, is the
gauge covariant derivative for this representation. Any continuous path I';, linking the
point y to x may be parameterised by z#(t) where z#(0) = y*,z*(1) = x*. For all such
paths there is an associated element of the gauge group G, as in (7.2), which is obtained by
integrating along the path I'; ,. For the particular matrix representation R of G determined
by ¢ this group element corresponds to P(I';,) € 9 where P(I';,)¢(y) transforms under
local gauge transformations g(x) € R belonging to G, while ¢(y) transforms as in (7.5) for
g(y) belonging to G,,.

For simplicity we consider an abelian gauge theory first. In this case P(I';,) € U(1)
and under gauge transformations transforms as a local field at x and its conjugate at y. For
a representation specified by a charge ¢ as in (7.5), this is defined in terms of the differential
equation

d L , . dax#
i iqgit(t)Au(z(t)) | P(t,t') =0, P(tt)=1, it= pt (7.93)
which has a solution,
P(t,t) = eit i dT (D Au(@(n) (7.94)
We then require
P(Tyy) = P(1,0) = a8 4@ ¢ 71y (7.95)

26Equivalently if F(z) = det(I — 2X) =1+ Zf;l ar(X) 2" then

=tr(X(I - zX)fl) = izrtr(XTH) ,
r=0

and expanding the left hand side determines tr(X™) for all n solely in terms of a,, r = 1,... N which are
also expressible in terms of tr(X™) for n < N.
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which is independent of the particular parameterisation of the path I'; ,. Under the abelian
gauge transformation in (7.11)

P(Tyy) — P(Tyy) e Jran® e

et

_ eiqa(x) P(nyy) e—iqa(y) , (796)

demonstrating that, for ¢ transforming under gauge transformations as in (7.5),

P(Tyy)d(y) — €9 P(Tyy)é(y) .- (7.97)

e

If T is a closed path, with a parameterisation z#(t) such that z#(1) = 2#(0) = 2" € T,
then I' = T'; , for any = on I'. It is evident from (7.96) that P(I") is gauge invariant. In
this abelian case P(I') may be expressed just in terms of the gauge invariant curvature in
(7.14) using Stokes’ theorem

P(D) = ¢i0frdet4u(@) — o3ia f5dS" Fuv(a) (7.98)

for S any surface with boundary I' and dS*” = —dS** the orientated surface area element
(in three dimensions the identity is §.dx-A = fS dS-B, B=V xA withdS; = %ijdek).

For the non abelian case (7.93) generalises to a matrix equation

<I§t + A(t)> P(t,t)=0,  A(t)=a"Au(z(t)), Ptt)=1I, (7.99)

where A(t) is a matrix belonging to the Lie algebra for a representation R of G. (7.99) may
also be expressed in an equivalent integral form

t
P4 =1 — / dr A(1)P(r ). (7.100)

t/

Solving this iteratively gives
t t1 tn—1
Pty =1+ Z(—l)”/ dtl/ dta . / dt,, A(t1)A(t2) ... A(ty)
nZl tl tl t/

117 /!
= —1)"— e . 101
I+T;( )~ T]i[l/tldu TLA)At2) ... Alty)} (7.101)

where T denotes that the non commuting, for differing ¢, A(t) are t-ordered so that

TIAMA)) = {jﬁ?ﬁé; z i Z (7.102)
The final expression can be simply written as a -ordered exponential
P(t,t) = z{e* Joar A<T>} . (7.103)
The corresponding non abelian generalisation of (7.95) is then
P(T,,) = P(1,0) = P{e* Jr 0 A“(“)} €N, (7.104)
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with P denoting path-ordering along the path I' (this is equivalent to t-ordering with the
particular parameterisation x#(t)). These satisfy the group properties

P(lgy) P(Tyz) = P(TayoTy2), (7.105)
where I'; , o I'y . denotes path composition, and, if R is a unitary representation

P(Fﬂc,y)_l = P(Fz/,lx) = P(Fx,y)Tv (7.106)
with le,lx the inverse path to I'y .

For a gauge transformation as in (7.26), g(x) € R, then in (7.99)

A(t) 7 gAMD" —gt)g®)~", g(t) = g(z(t)) = P(t) e g(&) Pt t")g(t) ",
(7.107)
and hence
P(Tey) — g(@)P(Tey) 9y) " (7.108)

For I' =T'; , a closed path then we may obtain a gauge invariant by taking the trace
w(T) = tr(P(Fw@)) . (7.109)

W (T) is a Wilson?" loop. It depends on the path I' and also on the particular representation
R of the gauge group. Wilson loops form a natural, but over complete, set of non local
gauge invariants for any non abelian gauge theory. They satisfy rather non trivial identities
reflecting the particular representation and gauge group. Subject to these the gauge field can
be reconstructed from Wilson loops for arbitrary closed paths up to a gauge transformation.
The associated gauge groups elements for paths connecting two points, as given in (7.104),
may also be used to construct gauge invariants involving local gauge dependent fields at
different points. For the field ¢, transforming as in (7.5), ¢(z)"P(I';,)é(y) is such a gauge
invariant, assuming the gauge transformation g is unitary so that (7.5) also implies ¢(z)T —

¢(x)Tg(x)~".

If a closed loop T is shrunk to a point then the Wilson loop W (I') can be expanded in
terms of local gauge invariants, of the form shown in (7.87), at this point. As an illustration
we consider a rectangular closed path with the associated Wilson loop

W(D) =tr (P(Fz,a:+bej) P(Fa:+bej,x+aei+b6j) P<Fx+aei+bej,a:+aei) P(Fx—l-aei,m)) ) (7110)

where here I' are all straight line paths and e;,e; are two orthogonal unit vectors. To
evaluate W(O) as a,b — 0 it is convenient to use operators X", 0, with the commutation
relations

%% =0, [0,d)]=0, [0.%]=06/, (7.111)

which have a representation, acting on vectors |z), x € R*, where

), Dulr) = —9,lz). (7.112)

2"Kenneth Geddes Wilson, 1936-, American. Nobel prize 1982.
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In terms of these operators, since X” e~te" Dy — g—te' Dy (XV + te¥),
e Du|z) = |2(t) P(Taya) s Dy =0+ AuR), 2"(t) =" +te”, (7.113)

which defines P(I'; ;) ) for the straight line path ', , from z to z(t), with P(['; ;) = 1.
To verify that P(I'y),) agrees with (7.103) we note that

aate_te“b/‘ z) = —etD, e_te“D“|x> = <80t |z(t)) — |=(t)) e”Au(x(t))>P(Fm(t)7m), (7.114)
using (7.112) as well as (7.113). It is then evident that (7.114) reduces to
0
gy P(Ty),e) = —eAu(x(t) P(Tow)2) (7.115)

which is identical to (7.93). For the rectangular closed path in (7.110)

‘:L'> P(Fx,x—l—bej) P(Fac—l—bej,a:—&—aei—&-bej-) P(Fw-l—aei—i-bej,a:—l—aei) P(Fx+aei,x)
_ ebﬁj eaﬁi e—bﬁj e—aﬁi|x>
— ea‘b [ijbl}_%QQb[[ijbl]zbl”"’_%abg [ij[bjzbl”"’_ |x>

— |x> e—abFZ‘j($)—%GQbDiFij(Z)—%ab2Dj FZ](IE)—F , (7116)

using the Baker Cambell Hausdorff formula described in 5.4.2 and [D;, D;] = Fj;(%). Hence,
for a N-dimensional representation with tr(t,) = 0, the leading approximation to (7.110) is
just
W(\:‘) =N+ %a2b2 (1 + %CLBZ + %baj + %a28i2 + %b28j2 + iab&laj) tI‘(Fi]’Ej)
— ia‘le tI‘(DZ‘FijDiFZ'j) — iaQb‘l tI‘(DjFZ'ijF%j)
— %a?’b3 tr(F,'jFijFij) +..., nosumson i,j. (7.117)

For completeness we also consider how P(I';,) changes under variations in the path
I'yy. For this purpose the path I' is now specified by x*(t, s), depending continuously on
the additional variable s, which includes possible variations in the end points at ¢ = 0,1. If
we define ¢, s covariant derivatives on these paths by

0 0 ozt ozt
Di=T—+A Dy=1T—+A:(), A(t)=—A , As(t) = —A , (711
p= T+ A1), A, A = A, Al = S Au(e), (7118)
leaving the dependence on s implicit, then
ozt Ox”
Dy, D] =F(t) = —— Fu(x). A1
[ ts ] ( ) It Os w (:C) (7 9)

With the definitions in (7.118), (7.99) becomes Dy P(t) = 0. Acting with Dy gives

DyDsP(t,t") = F(t)P(t,t), DyP(t,t) = As(t), (7.120)
which has a straightforward solution giving
d 1
L P(1,0) + A()P(L,0) - P(1,0)4,(0) :/ dt P(1,)F(t)P(t,0). (7.121)
0
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The result (7.121) may be recast as

51 P(Tay) + 627 Ay () P(Tay) — P(Tay) 65" Au(y)

= / dzt P(T'y.2) Fuu(2)0x”(2) P(I'2y) , (7.122)
Tuy
where
Ipy=Tz.00., for zel,,. (7.123)
For a Wilson loop
SrW () = 7{ da# tr(Fp(z)dz” (z) P(Tez)) - (7.124)
r

For a pure Chern-Simons theory then, as a consequence of the dynamical equation (7.66),
there are no local gauge invariants and also Wilson loops are invariant under smooth changes
of the loop path. The Wilson loop W (I') # N only if it is not contractable to a point.

8 Integrations over Spaces Modulo Group Transformations

In a functional integration approach to quantum gauge field theories it is necessary to
integrate over the non trivial space of gauge fields modulo gauge transformations, as in (7.4)
with the definitions (7.1) and (7.2). This often becomes rather involved with somewhat
formal manipulations of functional integrals but the essential ideas can be illustrated in
terms of well defined finite dimensional integrals.

To this end we consider n-dimensional integrals of the form

/nd"x fx), (8.1)

for classes of functions f which are invariant under group transformations belonging to a
group G,

f(x) = f(29), for =z Py 9 forall geG. (8.2)

Necessarily we require .
(x91)92 = 9192 | (29)9 ==, (8.3)

and also we assume, under the change of variable x — 9,
d"x =d"z9. (8.4)

The condition (8.4) is an essential condition on the integration measure in (8.1), which is
here assumed for simplicity to be the standard translation invariant measure on R”. If the
group transformation g acts linearly on z then it is necessary that G C Si(n,R) x T},, which
contains the n-dimensional translation group 75,.

For any z the action of the group G generates the orbit Orb(z) and those group elements
which leave x invariant define the stability group H,,

Orb(z) = {29}, H,={h:a"=z}. (8.5)
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Clearly two points on the same orbit have isomorphic stability groups since
Hy, =g 'Hyg~H,CG. (8.6)

We further require that for arbitrary x, except perhaps for a lower dimension subspace, the
stability groups are isomorphic so that H, ~ H. Defining the manifold M to be formed by
the equivalence classes [z] = {z/ ~}, where 29 ~ z, or equivalently by the orbits Orb(z),
then M ~ R"/(G/H). We here assume that G, and also in general H, are Lie groups, and
further that H is compact. In this case M has a dimension which is less than n. Although
R™ is topologically trivial, M may well have a non trivial topology.

In the integral (8.1), with a G-invariant function f, the integration may then be reduced
to a lower dimensional integration over M, by factoring off the invariant integration over
G. To achieve this we introduce ‘gauge-fixing functions’ P(x) on R™ such that,

for all x € R" then P(x9) =0 for some g € G,

if P(z9) =0 then P(zf) =0 = g=heH, a2 =x0. (8.7)
In consequence the independent functions P(z) € R" where i = dimG — dim H. The
solutions of the gauge fixing condition may be parameterised in terms of coordinates 6",
r=1,...,n—n, so that

P(z0(8)) =0 = ¢ coordinateson M, dimM =n—n. (8.8)

For any P(x) an associated function A(z) is defined by integrating over the G-invariant
measure, as discussed in 5.7, according to

/de(g) 5ﬁ(P(x9)) A(x)=1. (8.9)
Since by construction dp(g) = dp(¢’g) then it is easy to see that

A(x?) = A(x) forall geG. (8.10)

Using (8.9) in (8.1), and interchanging orders of integration, gives
/nd”a; f(z) = /de(g) /nd"x §"(P(z9)) A(z) f()
= [anta) [ @t 5°(Pat) Aw?) fla?)
= /Gd,o(g)/nd”:c 5" (P(2)) Az) f(z). (8.11)
using the invariance conditions (8.2), (8.4) and (8.10), and in the last line just changing the

integration variable from z9 to x. For integration over M we then have a measure, which
is expressible in terms of the coordinates 6", given by

dp(f) = d"z 6" (P(z)) A(z). (8.12)
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To determine A(x) in (8.9) then, assuming (8.7), if
g(a,h) = exp(a)h, a€g/h, (8.13)
we define a linear operator D, which may depend on xg, such that
2 @M = 10+ D(zg)or, for a=0, D(zp):g/h — R". (8.14)

If {T;} is a basis for g/h (if g has a non degenerate Killing form « then x(h,T;) = 0 for all
a and we may write g = h @ g/h) then

o =T, (8.15)
and, with the decomposition in (8.13),
dp(g) = [[da®dpu(h)  for  a®=0, (8.16)
a=1

for dpg(h) the invariant integration measure on H. For x near zy we define the linear
operator P’ by

P(zg+1y) = P'(z0)y for y=~0, P'(x0) : R™® — R™. (8.17)

Then in (8.9), with (8.16),

/dp(g) 0" (P(2%)) = /dp(g) 0" (P(z()) = VH/dﬁa 6" (P'(x) D (o))
G G

1
=Vu | det P'(x0) D(z0)| Vi = /Hde(h) ' (8.18)
Hence in (8.9)
A(z) = VL | det P'(z0) D ()| for x =z . (8.19)
H

In a quantum gauge field theory context det P'(xq)D(z0) is the Faddeev-Popov*® determi-
nant. The determinant is non vanishing except at points xg such that P(x¢’) = 0 has
solutions for g ~ e and g ¢ H and the gauge fixing condition P(x) = 0 does not sufficiently
restrict g. The resulting measure, since

Pz)=0 =  z=x(0,a)=1x0(0)9" (8.20)

from (8.12) becomes, with a change of variables x — 0, a,
du(0) = Vi &'z 57 (P(x)) |det M(O)|,  M(6) = P/(20(0)D'(20(0)).  (821)
H

Note that ) )
§"(P(x(0,))) | det M(0)] = 6"(a), (8.22)

28Ludvig Dmitrievich Faddeev, 1934-, Russian. Viktor Nikolaevich Popov, Russian.
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and therefore the measure over M may also be expressed in terms of the Jacobian from 6, «
to x since

(8.23)

du(6) = A9 ’ det [a‘T 8”3]

90 dax

a=0

With these results, for G compact, (8.11) gives

/ d"z f(z) = Vo /R @ 5 (P(r)) Aw) £(x) = Vo / du(0) f(zo(9)). (8.24)

n M

As an extension we consider the situation when there is a discrete group W, formed by
transformations 6 — 69, such that

W = {gi : 20(69) = ()99, g(g:) € G} . (8.25)

It follows that M (09) = M () and du(69) = du(f). Since the stability group H leaves xg
invariant g(g;) is not unique, hence in general it is sufficient that ¢(g:)g(g;) = 9(gig;)h for
h € H. In many cases it is possible to restrict the coordinates {6"} so that W becomes
trivial but it is also often natural not to impose such constraints on the 8™’s and to divide
(8.21) by |W| to remove multiple counting so that

_ 1
W Vi

dp(9) d"z 6" (P(z)) | det M (0)], (8.26)

8.1 Integrals over Spheres

As a first illustration of these methods we consider examples where the group G is one of
the compact matrix groups SO(n), U(n) or Sp(n) and the orbits under the action of group
transformations are spheres.

For the basic integral over x € R™ in (8.1), where = (z!,...,2"), we then consider
f(z) =F(a?), (8.27)
where 22 = 'z is the usual flat Euclidean metric. In this case we take G = SO(n) which

acts as usual x — 2/ = Rz, regarding z here as an n-component column vector, for any
R

R € SO(n). Since det R = 1 of course d"z’ = d"x. The orbits under the action of SO(n)
are all z with 22 = r? fixed and so are spheres S™~! for radii . A representative point on
any such sphere may be chosen by restricting to the intersection with the positive 1-axis or

xo =7r(1,0,...,0,0), r>0. (8.28)

In this case the stability group, for all » > 0, H ~ SO(n — 1) since matrices leaving z¢ in
(8.28) invariant have the form

R(R) = (3 2) . ReSOm-1). (8.29)
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Note that dim SO(n) = $n(n—1) so that in this example # = dim SO(n) —dim SO(n—1) =

n — 1, and therefore n — n = 1 corresponding to the single parameter r.

Corresponding to the choice (8.28) the corresponding gauge fixing condition, correspond-
ing to 6"(P(x)), is

f@ﬂ:ﬂfﬂj&ﬂy (8.30)

The condition 2! > 0 may be omitted but then there is a residual group W =~ Zs cor-

responding to reflections ' — —a!. For the generators of SO(n) given by (5.220) we
have

Ssizog=7r(0,..., 1 ,...,0), s=2,...,n, (8.31)
s’th place

so that in (8.13) we may take
o= Z asSs1 , (832)
5=2

so that
exp(a)zg = r(1,ag,...,ap) for a=0. (8.33)

For the measure we assume a normalisation such that

N

dpsopm)(R) = d"tadpsom-n(R) for R=exp(@)R(R), a0, (8:34)
where R(R) is given in (8.29). With the gauge fixing function in (8.30)

T 1
/SO(dPSO(n)<R) F(Rx) = Vsom-1) /dn ‘o T 6 (aslz]) = Vsogm-1) AT (8.35)

n) s=2

Hence

1
Alz) = —— "L, =% r>0. (8.36)
Vso(n-1)

With this (8.24) becomes

V e}
_50(m) / dr r”_lF(TQ). (8.37)

/ d"z F(z?) = VSO(n)/ d"z F(z) A(z) F(2?) =
n R7 Vsom-1) Jo

Of course this is just the same result as obtained by the usual separation of angular variables
for functions depending on the radial coordinate 7.

For a special case

_ 1 Vsom) [, a1 2 Vsom)
drg e=2® = gan = 290 [ g pn lemm™ = 22 1p(ly), 8.38
/n Vsomn-1) Jo Vson-1) > () (8.38)
giving
Vsow _ g _ 27" (8.39)
Vsom-1) L(in)’
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where S, is the volume of S"~!. Since Vso(2) = 2w, or Vso(1) = 1, in general

(8.40)

For the corresponding extension to the complex case we consider integrals over C* ~ R??,

of real dimension 2n, with coordinates Z = (z1,...,2,), zi € C. The analogous integrals
are then
n
/ A"ZF(Z2Z), ZZ=)_|al, (8.41)
" i=1
and where "
>z = H d?z;, d?z = dady for z=x+iy. (8.42)

i=1
In this case we may take G = U(n) C O(2n) where the transformations act Z - UZ for

U € U(n) so that ZZ is invariant, as is also d2*Z. As in the discussion for SO(n) we may
take on each orbit
Zo=1(1,0,...,0,0), >0, (8.43)

The stability group H ~ U(n — 1) corresponding to matrices

U0 = (é 2) . TeUm-1). (8.44)

In this case dim U(n) = n? so that 7 = dimU(n) — dimU(n — 1) = 2n — 1. The orbits are
just specified again by the single variable r.

Corresponding to (8.43) the gauge fixing condition becomes

F(Z)=0(Rez1)d(Imz) H 5%(z), 6%(2) = 6(x)d(y), z=x+iy. (8.45)
1=2

In terms of the generators defined in (5.214) we let

a=im R+ (s R1—afRY), o €R, a,eC, s>2. (8.46)
5=2
Hence
exp(a)Zo = r(l +iog, g, ..., ap), a~~0, (8.47)

and we take
dpy ) (U) = doa [T—s d%a, d,oU(n_l)(U) for U =exp(@)UU), a=0. (8.48)

With these results 1

n—1) ’21|2n—1 ) (849)

[ o) FU2) = Vi
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which implies

A(Z) = ! rnt ZZ=7v%, r>0. (8.50)
VU(n—l)

Finally

n

/ d*"Z F(ZZ) = VU(n)/ d*"Z F(Z)A(Z)F(ZZ) = VU(”)/Oodr r2IR(r?) . (8.51)
Cn 0

Corresponding to (8.39), (8.51) requires

= Son. (8.52)

v, P e (8.53)
viw) [T ()
Since U(n) ~ SU(n) @ U(1)/Zy,
27
Vo) =~ Vsum) - (8.54)

A very similar discussion applies in terms of quaternionic numbers which are relevant
for Sp(n). For Q = (q1,...,qn) € H" the relevant integrals are

[amer@a.  aa=Y . (8.55)
" i=1
and where

dnQ = H diq; di¢ =dzdydudv for z=z+iy+ ju+kv. (8.56)

=1

QQ is invariant under Q o MQ@ for M € Sp(n) C SO(4n), regarded as n x n quaternionic

unitary matrices M satisfying (1.62). As before we choose
Qo =r(1,0,...,0,0),  r>0. (8.57)

The stability group H ~ Sp(n — 1) corresponding to quaternionic matrices where M is
expressible in terms of M € Sp(n — 1) in an identical fashion to (8.44). We now have
dim Sp(n) = n(2n + 1) so that n = dim Sp(n) — dim Sp(n — 1) = 4n — 1.

The associated gauge fixing condition becomes

n

F(Q) = 0(Req1)s*(Imqy) H54(Qi) ; 64 (q) = 0(x)6(y)d(w)d(v), q =+ iy +iu+iv.
i=2
(8.58)
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In terms of the generators defined in (5.214) we let

a=a Ry +) (s R -5 R'), as €H, Rea;=0. (8.59)
s=2
and
dpspny (M) = d®on [0, d*as dpspn-1y(M)  a~0. (8.60)
Hence we find
A(Q) = - pin=t QR =71, r>0. (8.61)
Vsp(n—1)

The integral in (8.55) becomes

_ - Vepny [ -
| a"Q PQQ) = Vi [ 4"Q F@AQIF@QQ) = 2 [ ar it lr?).

B VSp(nfl) 0
(8.62)
and corresponding to (8.39), (8.62) requires
Vsp(n
o) g, (8.63)
Vsp(n-1)

Since Sp(1) = {q : |q|*> = 1}, with the group property depending on |q1q2| = |q1]|¢2|, the
group manifold is just S® and

Vsp(1) = /d4q 3(lgl = 1) = Sy = 27%, (8.64)

just as in (5.155). Hence
7.‘.n(n—s—l)

The results for the group volumes in (8.40), (8.53) and (8.65) depend on the conven-
tions adopted in the normalisation of the group invariant integration measure which are
here determined by (8.34), (8.48) and (8.60) in conjunction with (8.32), (8.46) and (8.59)

respectively.

8.2 Integrals over Symmetric and Hermitian Matrices

A class of finite dimensional group invariant integrals which are rather more similar to
gauge theories are those which involve integrals over real symmetric or complex hermitian
matrices.

For the real case for n x n symmetric matrices X the relevant integrals are of the form

/d%”(”“)X f(X), X=XT, gentDx = [Taxu [] dx. (8.66)

i=1 1<i<j<n
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and we assume the invariance
f(X)=f(RXR™Y), ReSOM). (8.67)

The measure d2”(" ™)X is invariant under X — RXR~!. A standard result in the discus-
sion of matrices is that any symmetric matrix such as X may be diagonalised so that

N ... 0
RXR'=A=|: .. |, (8.68)
0 ... A\,

where ); are the eigenvalues of X. If {)\;} are all different there is no continuous Lie
subgroup of SO(n) such that RAR™! = A since

dim{X : X = X7} —dim SO(n) = In(n+1) — in(n — 1) =n, (8.69)

corresponding to the number of independent \;. The orbits of X under the action of SO(n)
are then determined by the eigenvalues {\;}. For any SO(n) invariant function as in (8.67)
we may write

FX)=FO), A=) (8.70)

However there is a discrete stability group for A. The diagonal matrices corresponding
to reflections in the i-direction

i (8.71)

Ri=il| : 1 cleom), i=1,...,n, R?=1,. (8.72)

generate the discrete group
{Ral._an =R™...Ry_{":a; = 0, 1} ~ Z2®n , (873)

such that for any element
Ral...anARa1...an_1 =A. (874)

Furthermore for any permutation o € S,, there are corresponding matrices R, € O(n), such
that (R,)ij7j = Z,(;)- The matrices { Ry} form a faithful representation of S,, and

Aoty -0
RAR, ' =A,=| - : (8.75)
0 oo Ao
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For the permutation (ii+1) the associated matrix is

i (8.76)

Riipny =1 0 i=1,....,n—1, (8.77)

which may be used to determine R, for any o by group multiplication. Since R,R;R, ! =
R iy the groups generated by permutations and reflections may be identified as the semi-
direct product S, x Zs°". However det R, = P, = +1, with P, defined in (6.88), and
also det Ry, 4, = (—1)2i%. Restricting to the subgroup belonging to SO(n), having
determinant one, we then take for the group W, as defined in (8.25),

W = (S, x Zs°") | Zs, W|=2""1n!. (8.78)

It is possible to restrict W to Zo®"~ !, formed by R, .., with ). a; even, by requiring that
the eigenvalues in (8.68) are ordered so that A\; < A\; 1. However the choice of W in (8.78)
is generally more convenient.

Taking Xy = A, as in (8.68), the corresponding gauge fixing condition is

Fx)= [ o6&xiy). (8.79)

1<i<j<n
For a rotation
R(a) = exp(a), a=—al, (8.80)
and the group invariant integration is then assumed to be normalised such that, for R as
in (8.80),
dpsom) (R(@)) ~ H doy; , a=x0. (8.81)

1<i<j<n

With these assumptions, applying (8.9),

1 _
AX) = /So(n()iPSO(n) (R) F(RXR™') = 1§g§n/dazj 0(aij(Aj — X)), (8.82)
so that K R
AX) =AW for AN = J[ i—xp). (8.83)
1<i<j<n

The resulting SO(n) invariant integration over symmetric matrices becomes

/ QX F(x) = Vfg/(? / B X F(X)A(X) F(X)

_ Vsom
- on—lp)

/ A"\ AN f(N). (8.84)
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Since the normalisations chosen in (8.80) and (8.81) are compatible with those assumed
previously we may use (8.40) for Vso(y,)-

For the particular example

F(X) = eman D), ZXu +2 ) X = i)& . (8.89)
=1

1<i<j<n

then )
Zn(n+1
/dQn(n+1)X e—intr(Xz) 23 in <E) anlnt ) (886)

K
Using (8.40) this defines a normalised probability measure for the eigenvalues for a Gaussian
ensemble of symmetric real matrices

au() SO Ty a0 (s
H symmetric matrices — i e 22wt .
’ 23" [To D1+ 39) i

There is a corresponding discussion for complex hermitian n x n matrices when the
integrals are of the form

/d”zXf(X), X=x" da’x= HdX“ I ax;. (8.88)
1<i<j<n

where f satisfies
fX)=fUXUY, UecUMm). (8.89)

Just as before hermitian matrices may be diagonalised
UXU 1 =A, (8.90)

where the diagonal elements of A are the eigenvalues of X as in (8.68). In this case there
is a non trivial continuous subgroup of U(n) leaving A invariant formed by the diagonal
matrices

ebo 0 ... 0
0 e :
Uo(B)=| . R (8.91)
0 ... eihn
and hence we may identify
H~U(1)%", (8.92)

In addition we may identify W = §,, formed by {R,} C U(n) which permute the eigenvalues
in A.

The gauge fixing condition restricting X to diagonal form is now

I #&i)). (8.93)

1<i<j<n
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In this case we may write for arbitrary U € U(n),

Ul(a, B) = exp(a)Up(B), a=—-a", az=0alli, (8.94)
and the group invariant integration is then assumed to be normalised such that, for U as
n (8.94),

Aoy (U ~ ] oy H dg;, a~0,0<g; <2r. (8.95)
1<i<j<n

With these assumptions

/ dpy ) (U) F(UXU™Y) = (2m)" H /an” 5% (cij(Aj — Ni)) - (8.96)
U(n) 1<i<j<n
Since
Y
52(\z) = W 52(2), (8.97)
this gives .
1 R
A(X) = IT ci—x)2= A2, (8.98)

O ke, ny

The result for U(n) invariant integration over hermitian matrices becomes

/ 47X f(X U<"> / 4”X F(X)A(X) F(X)
_ n‘V(UZ(;))” / "X A2 F(N), (8.99)

where we may use (8.53) for Vi(,,).

For a Gaussian function

1 1, (T2 .
/anX € QRU(XZ) == 22n(g>2 ’ ZXu +2 Z ‘X2]|2 z;)\zz
1=

1<i<j<n
(8.100)
Using (8.53) this defines a normalised probability measure for the eigenvalues for a Gaussian
ensemble of hermitian matrices

1 p
dﬂ()‘)hermitian matrices = H dX; A 5521' A2 . (8.101)
(QW) | | F A atey

Extending this to quaternionic hermitian n x n matrices the relevant integrals are

/d"(2”1)X f(X), X=X, d"®Vx= Hqu I a'x. (8.102)

1<i<j<n
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where X is defined by (1.61) and integration over quaternions is given by (8.56). f is now
assumed to satisfy
f(X)=fMXM™Y),  MecU(nH). (8.103)

Such quaternionic matrices may be diagonalised so that, for a suitable M € U(n, H),
MXM™'=A, XN=X\. (8.104)

Using the correspondence with 2n x 2n complex matrices provided by (1.63) and (1.64),
when M — M € USp(2n,C) and X — X where

x=xt,  x=-JxTJ. (8.105)

The eigenvalues of X must then be £);, i = 1,...n, and (8.104) is equivalent to the matrix
theorem that the 2n x 2n antisymmetric matrix X'J may be reduced to a canonical form in
terms of {\;},

0 A
X0 00,\
O 2
MATMT = e 0 for M € U(2n). (8.106)

0 An
—An O

In (8.104) the subgroup of U (n, H) leaving A invariant is formed by quaternionic matrices

@1 0 0
Mo(q) = 0 @ .l =1, (8.107)
0 ... o
giving
H~U(1,H)®". (8.108)

As before W = S,, formed by {R,} C U(n,H) which permute the diagonal elements in A.

The gauge fixing condition restricting X to diagonal form is now

Fx)= [ oxi). (8.109)

1<i<j<n
In this case we may write for arbitrary M € U(n, H),
M(a, q) = exp(a)My(q) , a=—a, agz=0alli, (8.110)

and the group invariant integration is then assumed to be normalised such that, for M as
in (8.110),

dpu(ni (M (e, q)) = H d*ay H d*q; 0(|qs| — 1), a=~0. (8.111)
=1

1<i<j<n
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With these assumptions and using (8.64)

/U( de(n,H)(M) f(MXMﬁl) = (27T2)n H /d4aij (54 (aij()\j - /\z)) . (8.112)

n,H) 1<i<j<n

In this case 1

A(X) = [T - =

2
(2m2)" 1<i<j<n

1
(2m2)"

AN*. (8.113)

The result for U(n, H) invariant integration over quaternion hermitian matrices becomes

4" x f(X) = Voo [ g2y F(X)AX) f(X)
|

n:

= M/dnk AN, (8.114)

where we may use (8.65) for Vg, ).
For the Gaussian integral

n n
/d"(zn_l)X e~ 3R tr(X?) _ 2%”<E> an(n=1) . tr(X?) = Zsz +2 Z X35> = Z)\z? )
K i=1 1<i<j<n i=1
(8.115)
Using (8.65) we therefore obtain a normalised probability measure for the eigenvalues for a
Gaussian ensemble of hermitian quaternionic matrices

In 4 3n(2n—1)

2 " 1 2
du(A ermitian quaternionic matrices = (f) T o d)\z A(X 4 77RZZ‘ Ai . 8.116
(A ) hermitian quat % - H?:l(%)! Zl_Il (N)*e 2 ( )

8.2.1 Large n Limits

The results for the eigenvalue measure du(\), given by (8.87), (8.101) and (8.116) for a
Gaussian distribution of real symmetric and hermitian complex and quaternion matrices,
can be simplified significantly in a limit when n is large. In each case the distribution has
the form

na 1
dp(A) = Npd™ eV w(y) = EKZAE —38 ) Infx = Al (8.117)
i 0,J,i#]
where 3 = 1,2,4 and we may order the the eigenvalues so that

AL < Ao <o < Ay (8.118)

For a minimum W () is stationary when

1
“i:ﬁz&._x- (8.119)
i J

154



In the large n limit we may approximate A; by a smooth function,

dx

; 1
—n/odzc—n/d)\p(/\), p()\):a>0, (8.120)

Ai A ) =
— ANz), = -

n
1=

1

where p(\) determines the eigenvalue distribution and is normalised since

/d)\ p(A) = /Oldx =1. (8.121)

As n — oo the distribution is dominated by A(z) such that W () is close to its minimum.
The minimum is determined by (8.119) or, taking the large n limit,

1

S 8.122
. (3122)

Za=P [ dupia)

where P denotes that the principal part prescription is used for the singularity in the integral
at = A.

(8.122) is an integral equation for p. To solve this we define the function

R
1 1
F(z)= d ~ — 8.123
(2) /_RMP(M)z—u a8z 00, (8.123)
using (8.121) and assuming
p(p) >0, [ul<R,  p(u)=0, |ul>R. (8.124)

F(z) is analytic in z save for a cut along the real axis from —R to R. The integral equation
requires

. R .
F(uio) = S pFinp(n,  |nl <R, (8.125)

Requiring F(z) = O(z7!) for large z this has the unique solution

F(z) = %(2 V2 - R?). (8.126)

The large z condition in (8.123) requires
R? =1 (8.127)
This then gives

P = 2 VR - N (8.128)

T TR?
This is Wigner’s semi-circle distribution and is relevant for nuclear energy levels.
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8.3 Integrals over Compact Matrix Groups

Related to the discussion of integrals over group invariant functions of symmetric or her-
mitian matrices there is a corresponding treatment for integrals over functions of matrices
belonging to the fundamental representation for SO(n), U(n) or Sp(n). For simplicity we
consider the unitary case first.

For matrices U € U(n) the essential integral to be considered is then defined in terms
of the n?-dimensional group invariant measure by

/ dpu (U) 1), (5.129)
U(n)

where

f(U)=fvuv=ly  forall VeU(n). (8.130)
Just as for hermitian matrices U can be diagonalised so that
VUV =Us(0), 0= (0,...,0,), (8.131)

where Uy is defined in (8.91). For 6; all different V' is arbitrary up to V.~ VUy(f), for
any 8 = (B1,...,0n) so that the associated stability group H = U(1)®". The remaining
discrete symmetry group in this case is then

Wun) = Sn (8.132)
since, for any permutation o € S, there is a R, € O(n) such that

ReUo(0)R; ™ =Uo(0s), b5 = (Op1)s---+00(n)) - (8.133)

Thus we use the gauge fixing condition

FO)y= [] oWy). (8.134)

1<i<j<n
Using the same results as given in (8.94) and (8.95) we then get
/ dpu( (V) F(vUVTY) = 2m)* ] / d%auj 6% (i (€ — €4)) (8.135)
Un) 1<i<j<n

so that, using (8.97),

1 i0 o2 1 i lig 92
A(U)—(2 B H e — i = @ H (2sin 5(6; — 6;))
1<i<j<n 1<i<j<n
1 PO .
= A(e?)A(e™), (8.136)
(2m)"

with the definition (8.83). The basic formula (8.26) then gives an integration measure over
the 6;’s

1 n
Ao (0) = — Hd@i [T (sind@—0,))*, o0<6 <o2r. (8.137)
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By restricting f(U) = 1 in (8.129) it is clear that this integration measure is normalised,
J dpyny(0) = 1, since Vi) may be factored from both sides.

To reduce to SU(n) we let 6; = 0 + 0;,i=1,....n—1,0, =0 — Z?;ll 6;, where
now 0 < 6; <2rand 0 < 6 < 2m/n and also [[;, d¢; = ndf H;:ll df;. The 6 integral
may then be factored off, corresponding to the decomposition U(n) ~ SU(n) ® U(1)/Zy,
or equivalently 6, is no longer an independent variable but determined by ). 6; = 0. For
any R, if det R, = —1 we may define Rg = ™/ "R, and otherwise R(, = R, so that
{R,} C SU(n) and also R,Uy() R, * = Up(6,). Hence, as in (8.132), we still have

Restricting (8.137) to SU(n) we then obtain

n—1 n—1
1 . 2
’ i=1 1<i<j<n i=1
For real orthogonal matrices in a similar fashion
/ dpsom(R) f(R),  f(R)= f(SRS™") forall S e SO(n). (8.140)
SO(n)

In this case it is necessary to distinguish between even and odd n. For any R € SO(2n) it
can be transformed to

7’(91) 0 e 0
SRS~ = Ry(0) = ? r(62) . ., SeSo(2n), (8.141)
0 r(600)

where Ry(0) is written as a n x n matrix of 2 x 2 blocks with
r(0) = (% &86) - (8.142)

In (8.141) S ~ SRy(0), for arbitrary 3 = (f1,. .., Bn), so that the stability group for Ry ()
is then SO(2)®". The discrete group defined by 2n x 2n matrices {S} € O(2n) such that
SRy(6)S™! = Ro(¢') is S,, x Z5®", with the permutation group S, formed by {R, ® I} and
Z5°™ generated by

Rlz’L g3 60(277’)’ izlv"‘vnv Ri2:-[2nv (8143)
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since o3r(f) o3 = r(2mr — ), for o3 = ((1) _01). Restricting to the subgroup formed my
matrices with determinant one

Wso(an) =~ (Sn x Zs™") [/ Zs . (8.144)

Writing R € SO(2n) in terms of 2x2 blocks R;j, i, j = 1,...n, the gauge fixing condition
is then taken as

T &), (8.145)
1<i<j<n
with the definitions
§*(A) = 6(a)d(b)d(c)é(d), d*A=dadbdedd for A= (%}). (8.146)
For a general rotation S € SO(2n) we may write
S=e50(3), AT=—-4, A;=0 alli, (8.147)
and then
dpsoen(S) = [ 4*4y Hd@ for A=0. (8.148)
1<i<j<n
Using (8.148) is then sufficient to obtain
/ dpso(en)(S) F(SRo(0)S™1) = (2m)™ ] / d* A 04 (Ayr(0;)—7(0;) Aj) . (8.149)
SO(2n) 1<i<j<n
With ,
54 (Ar(0) —r(0")A) = 54(A), (8.150)

4(cosf — cos)?
we then get for SO(2n)

A(R) = ! H (2(cos b; — cos 9j>)2 = @) (A(Q cos 9))2, (8.151)

1<i<j<n

where A is defined by (8.83).

Combining the ingredients the measure for integration reduces in the SO(2n) case to
an integral over the n 6;’s given by

dpesoqn) (0) = 55 1n' =0 Hde A(2cos0))?. (8.152)

For SO(2n+1) (8.141) may be modified, by introducing one additional row and column,
to

T(@l) 0 . 0 o
0 7"(92)
SRS™'=Ry(0)=| o SeSo@2n+1), (8.153)
0 r(6,) 0
0 e 1



with r(6) just as in (8.142). Instead of (8.143) we may now take

IQ ................. 0 o
: I :
Ri=il: 031 : | eSO@n+1), i=1,...,n, (8.154)
. 2 .
0 IQ 0
0 e —1

and in a similar fashion, for any permutation o € S,,, there is a R, € SO(2n + 1), with the
matrix R, having 1, —1 in the bottom right hand corner according to whether o is even,odd,
such that R RO(H)R = Ry(0,). Hence

Wso(ant1) = Sn X Z5™" . (8.155)

In this case R € SO(2n + 1) is expressible in terms of 2 x 2 blocks R;j;, 7,7 = 1,...n
2 x 1 blocks R;y,41 and also 1 x 2 blocks R,4+14 for ¢ = 1,...n. The gauge fixing condition

is now
n

= I @y [P Rintr), (8.156)

1<i<j<n =1

with 62(§) = (a) 8(b), similarly to (8.146). Expressing S € SO(2n + 1) in the same form
as (8.147) we now have

dpSO(2n+1 H d4 Z_] Hd A'LnJrl Hdﬁz for Ar 0, (8157)

1<i<j<n

so that

/ dpsoanin(S) F(SRo(6)S™)
SO(2n+1)

o I1 /d4A”54 Ayyr(6;) — 1(0) A H/dA,n+15 (I — 7(0:) Ainy1)

1<i<j<n

(8.158)

In the SO(2n + 1) case this implies

n

1 o
AR) = (A2cos)” [T (2sin 16:), (8.159)
i=1
and in consequence
1 = . A
dpsoens1)(0) = W H dé; (2 sin %Hi)z (A(2 cos 0))2 : (8.160)

i=1



The remaining case to consider is for integrals over M € Sp(n) ~ U(n,H) of the form

/ sy (M) FM),  F(M)= F(NMN"Y) forall NeSpn).  (8.161)
Sp(n)
By a suitable transformation the quaternion matrix M can be reduced to the diagonal form
et 0 ... 0
1 0 €i62
NMN™ = My0) =] . ) , N € Sp(n), (8.162)
0 ........ eifn

As before N ~ NMy(3) so the stability group is U(1)®™. The remaining discrete group
generated by R,1 € Sp(n), for 0 € S, and 1 the unit quaternion, and also by

Ni=;|: j | €8p(n), i=1,...,n. (8.163)

In this case N? = No(3), with e’ = —1. €% = 1, j # 4, so that N; corresponds to a Z
symmetry. Hence for Sp(n) we have

Wp(n) ~ Sn X L™ . (8.164)
For the Sp(n) case we take
= [ o'z I] 6° (M), (8.165)
1<i<j<n i=1

where, for any quaternion g, 6*(q) is defined as in (8.58) and also here

6%(q) = d(u)d(v) for g=z+1y+jut+kv. (8.166)
Writing then, for any N € Sp(n),
N = e My(B), aij =—a; €EH, i #j, oy =ju + kv, (8.167)
we have
dpspy(N) =[] d*asy Hd i Hdﬂz for a~0, (8.168)
1<i<j<n
so that

/S s (N) F (NI (O)N )

(2m)" H /d4az] azj 05 _ ¢if Lo H/d o 0 ozm — et oz”). (8.169)

1<i<j<n
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For this case we may use

A, 00 if N 1 4
0% (ace e’ a) = 4(cosf — cos 0)? 6(a)
0 i 1 .
52(a60769a):4sin2952(a) for a=ju+kv, (8.170)
to obtain .
A(M) = (2i)n (A2cos®)” [T (2sin6;)*. (8.171)
i=1
Hence .
: 2 /4 2
dpsp(m) (0) = Sl () Z-Hldei (2sin6;)” (A(2cos0))". (8.172)

As special cases we have dug,1)(0) = dugy(2)(0), diusoe)(0) = 2d,u5p(1)(%9) and also,
from SO(4) ~ (Sp(1) ® Sp(1))/Za, dpsow) (01 — 02,01 + 02) = 2dpugp)(61) dpsp(r)(62)
with, from SO(5) =~ Sp(2)/Zs, dugo) (01 — 02,601 + 62) = 2dugy2)(61,602), and, from
SO(6) = SU(4)/Za, dpusos) (02 + 03,03 + 01,61 + 02) = 2 dpgy () (61, 02, 03).

8.4 Integration over a Gauge Field and Gauge Fixing

An example where the reduction of a functional integral over a gauge field A € A can be
reduced to A/G, where G is a the gauge group, in an explicit fashion arises in just one
dimension. We then consider a gauge field A(t) with the gauge transformation, following
(7.26),

At) — AW = g AMg(1) ™ — dug(H) 9(t) ", (8.173)
where here we take
Aty = —At) eu(n),  gt)eUn). (8.174)

The essential functional integral has the form
Jaw s, s = ea. (8.175)

where we restrict to t € S by requiring the fields to satisfy the periodicity conditions

A(t) = At +P9), g(t) =g(t+pB). (8.176)

In one dimension there are no local gauge invariants. However if we define
U=%{e A0} ¢ yn), (8.177)

where ¥ denotes t-ordering, then, as a consequence of the discussion in 7.3 and the pe-
riodicity requirement (8.176), the gauge invariant function f in (8.175) should have the
form

f(A) = f(U)  where  f(U)= f(gUg™') forall geU(n). (8.178)
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In particular

Ps(U) = t2(U) , (8.179)

is gauge invariant, being just the Wilson loop for the circle S' arising from imposing peri-
odicity in t. Pg(U) is a Polyakov*® loop.

The general discussion for finite group invariant integrals can be directly applied to the
functional integral (8.175). It is necessary to choose a convenient gauge fixing condition.
For any A(t) there is a gauge transformation g(¢) such that

AW =ix,  xt=x. (8.180)
In consequence we may choose a gauge condition 9, A(t) = 0 or equivalently take
FlA] = §'[4], (8.181)

where 0’'[A] is a functional J-function, ¢’ denoting the exclusion of constant modes. For a
general Fourier expansion on S'

Aty =iX + ) A, ™0 XT =X, Af=-4_,, (8.182)
n#0

where X is a hermitian and A,, are complex n X n matrices, then

=[] ot 6% (4n) - (8.183)

n>0

M, is a normalisation factor which is chosen later. With the expansion (8.182) the functional
integral can also be defined by taking

= d"'X H d2" (8.184)
n>0

The integral (8.9) defining the Faddeev Popov determinant then becomes
/d,u(g) §'[A9] where A(t) = (iX)9®) for some g(t), (8.185)
g

and where du(g) is the invariant measure for the gauge group G. From (8.173) for an
infinitesimal gauge transformation

(X)9W =i X +i[\(t), X] — ON(t)  for gt) =T+ A1), MO =-Xt). (8.186)

If
gt) =go(I+A(¥) for At)m0, AE) =) AP N\f=-X,,  (8187)
n#0
then we may take
du(g) ~ dpymy(g0) A, d[A] = [T d*"A. (8.188)

n>0

29 Alexandre M. Polyakov, 1945-, Russian.
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Hence from (8.185) we define

/g dp(g) 8'[(iX)9] = Vo) (8.189)

= I[" /dQ” 52 <27TB”A [X,An])

1 .
A" / d[A] &' [i[A, X] 11

H/d2" 52 <>\ + B (X, ]) for N, = <2Tﬁm>2n2, (8.190)

n>0

which gives

Ax) =] <det< o 25 Xad)) . (8.191)

n>0

The essential functional integral in (8.175) then reduces to just an integral over hermitian

matrices X,
/ d[A] f(A) = — / 47X A(X) f(iX). (8.192)

Vi (n)

There is a remaining invariance under X — gXg~! for constant g € U(n). This may be
used to diagonalise X so that ¢X¢g~' = A where A is the diagonal matrix in terms of the

eigenvalues \i,..., Ay, as in (8.68). In terms of these
cigenvalues{ X} = \; — \;, i,5=1,...,n. (8.193)
Hence 3 (A )252
ad (A
det( g X ) I1 (1 - W) . (8.194)
1<i<j<n
Using
6> sin 6
11 (1 - W) = (8.195)
n>0
we get
in (A —A;)8\?
ax)= I (M) . (8.196)
1<i<j<n 3(Ai =)

As a consequence of (8.99) we further express (8.192) in terms of an integral over the
eigenvalues {\;} using

o = |
d"X — d™ A (A —Aj)7. 8.197

1<i<j<n

Using this in conjunction (8.196) in (8.192) gives finally
1 .
[ty 1) = o5 [ a3 5668). (8.199)
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with the measure for integration over U(n) determined by (8.137).

Although the freedom of constant gauge transformations has been used in transforming
X — A there is also a residual gauge freedom given by

2rr

g(t)y =¥ tPr p=0,41,42,... = A =A— 51 (8.199)
For this to be a symmetry for f(iX) = f(iA) we must have
FiX) = f(e %), (8.200)

where f is defined in terms of the line integral over ¢ in (8.178). The final result (8.198)
shows that the functional integral over A(t) reduces after gauge fixing just to invariant
integration over the unitary matrix U.
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