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Symmetries, Particles, and Fields Mathematical Tripos, Part III
Prof M B Wingate Michaelmas Term 2024

Examples Sheet 2

N.b. The general linear group of a vector space GL(V ) is the group of all automorphisms
of V , i.e. bijective, linear maps V → V . If V is finite dimensional and a basis is chosen,
then GL(V ) is isomorphic to the general linear group of matrices GL(dimV,F).

1. (Warm-up) The dihedral group D4 describes the symmetries of a square and is
generated by a 90◦ rotation r = R(π

2
) about its centre and a reflection m about the

vertical (say) symmetry axis.

(a) Write the group multiplication table for D4.

(b) Show that a representation of the dihedral group, D : D4 → GL(2,R), can be
constructed using the matrices

D(r) =

(
0 −1
1 0

)

and D(m) =

(
−1 0
0 1

)

.

Is this a faithful representation of D4? Is it a reducible representation of D4?

(c) Consider the subgroup K4 = {e, r2,m,mr2} (Klein’s Vierergruppe) and the
corresponding matrices used above. Show that these four matrices constitute
a reducible representation of K4, and identify the invariant subspaces.

2. The adjoint representation of the Lie group SU(2) is defined to be the map Ad :
SU(2) → GL(su(2)) given by:

AdA(X) = AXA† (∗)

for all A ∈ SU(2), X ∈ su(2).

(a) Show that Ad is indeed a group representation. This will require checking: (i)
for each A ∈ SU(2), we have that AdA is an automorphism of su(2); (ii) given
A,B ∈ SU(2), we have AdAB = AdA ◦ AdB.

(b) By writing A = I + Y + O(Y 2) in (∗), construct the associated adjoint repre-
sentation ad : su(2) → gl(su(2)), where gl(su(2)) is the space of linear maps
su(2) → su(2) of the Lie algebra su(2). Verify that your proposed representa-
tion of su(2) indeed constitutes a Lie algebra representation.

3. (a) If d1 and d2 are representations of a Lie algebra L(G), show that d1 ⊕ d2 is
too. Via the exponential map, show that exp(d1 ⊕ d2) = (D1 ⊕ D2)(exp) is
a representation of G, where you may assume that Di, where Di(exp(X)) =
exp(di(X)) for all X ∈ L(G), constitute well-defined representations of the Lie
group G for i ∈ {1, 2}.

(b) Prove that the tensor product d1⊗d2 is a representation of L(G). Exponentiate
to show that D1 ⊗D2 is a representation of G.
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4. Let D be a finite-dimensional representation of G acting on V , and ( , ) a positive
definite inner product on V invariant under G, i.e.

(D(g)u,D(g)v) = (u, v) : u, v ∈ V , g ∈ G .

D is said to be unitary in this case.

(a) Let W be an invariant subspace of V . Show that W⊥, the orthogonal comple-
ment of W in V , is also invariant.

(b) Deduce that D is completely reducible.

5. (Note that this question uses physics conventions for the generators ti, such that they
are Hermitian.) Three 3× 3 matrices t := (t1, t2, t3) are defined by (ti)jk = −iǫijk.

(a) Prove [ti , tj] = iǫijktk.

(b) Prove (n·t)3 = |n|2n·t.

(c) What are the possible eigenvalues of n̂·t if n̂ is a unit vector?

(d) We may represent a rotation by an angle θ about an axis that points along
the unit vector n̂ by the member of SO(3) Rij(n̂, θ) := exp(−iθn̂ · t )ij. By
convention, n̂ points in any direction and 0 ≤ θ ≤ π. Evaluate Rij explicitly
by summing the Taylor series of the exponential, and show that

Rij(n̂, θ) = ninj + (δij − ninj) cos θ − ǫijknk sin θ .

(e) Verify the formula e−iθn̂·σ/2 σj e
iθn̂·σ/2 = Rij(n̂, θ) σi .

(f) Given an n-dimensional representation D : G → GL(n,C) of a group G, we
can define its conjugate representation D̄ : G → GL(n,C) by complex
conjugation: D̄(g) = D(g)∗ for all g ∈ G. If D and D̄ are inequivalent, then
we say D is a complex representation. If D and D̄ are equivalent, then
there exists some invertible n×n matrix S such that D̄(g) = SD(g)S−1 for all
g ∈ G. In this case, if ST = S, then D is said to be a real representation,
otherwise ST = −S and D is said to be pseudoreal. (These are the only two
possibilities for equivalent, finite-dimensional representations.)

The set of matrices exp(−iθn̂ · σ/2) constitutes the defining representation of
G = SU(2). Show that this representation is pseudoreal and that the conjugate
representation has the same weights as the original.

6. This question regards the explicit map of SO(3) ∼= SU(2)/Z2.

(a) Show that Tr(σiσj) = 2δij . Why does this imply that any 2× 2 matrix A can
be expressed as

A =
1

2
Tr(A)I +

1

2
Tr(σA) · σ?

(b) Define a one to one correspondence between real 3-vectors and Hermitian,
traceless 2× 2 matrices: x → x · σ. Show that det(x · σ) = −x

2.
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(c) Next we define a transformation x → x
′ by x

′ · σ = Ax ·σA†, for A ∈ SU(2).
Deduce that x′2 = x

2 and so x′
i = Rijxj where R ∈ SO(3). Finally, show

Rij =
1

2
Tr(σiAσjA

†) .

(d) Show that σjσiσj = −σi implies σjA
†σj = 2Tr(A†)I − A† to obtain the equa-

tions σiRijσj = 2Tr(A†)A− I and Rjj = |Tr(A)|2 − 1.

(e) Why must Tr(A) ∈ R? Solve for Tr(A) and then A to show

A = ±
I + σiRijσj

2
√
1 +Rjj

.

7. Finding the explicit map of SO(1, 3)↑ ∼= SL(2,C)/Z2 follows a similar calculation
to the one finding the map of SO(3) ∼= SU(2)/Z2 in Q6.

(a) Defining σµ = (I,σ), σ̄µ = (I, −σ), argue that any 2 by 2 matrix A may be
written A = 1

2
Tr(σ̄µA)σµ.

(b) Now define a one-to-one correspondence between real 4-vectors xµ and hermi-
tian 2× 2 matrices x, where xµ → x = σµx

µ. Find det x in terms of xµ.

(c) For any A ∈ SL(2,C), we define a linear transformation x →A x′ = AxA† = x′†.
Show that x2 = x′2 and hence this must be a Lorentz transformation, so we can
write (x′)µ = Λµ

νx
ν , where Λ ∈ SO(1, 3)↑. Thus, show Λµ

ν = Tr(σ̄µAσνA
†)/2.

(d) To find the converse, show σνA
†σ̄ν = 2Tr(A†)I ⇒ Λµ

µ = |Tr(A)|2 and σµΛ
µ
ν σ̄

ν =
2Tr(A†)A and hence, for Tr(A) = eiα|Tr(A)|, A = eiασµΛ

µ
ν σ̄

ν/(2
√

Λµ
µ).

(e) Show that detA = 1 determines eiα up to a factor of ±1. Thus ±A ↔ Λ
(Λ ∈ SO(1, 3)↑ because SL(2,C) is continuously connected to the identity).

8. For a matrix Lie group G, consider the action of G on itself by conjugation, defined
by g′ → gg′g−1. Show that the eigenvalues of g′ and gg′g−1 are the same for all g,
so the eigenvalues are invariants of an orbit.

Find the eigenvalues of the SU(2) matrix cosα/2 I − i sinα/2 α̂ · σ where α =
αα̂. Deduce the orbit structure of SU(2) under the action of SU(2) on itself by
conjugation.

9. (Optional & nonexaminable extension question. Attempt only after finishing the
questions above.) Let V be the fundamental representation of SO(3). Recall that a
rank r SO(3)-tensor is an element of the tensor product representation

V ⊗r := V ⊗ V ⊗ ...⊗ V
︸ ︷︷ ︸

r times

.

We define V ⊗0 := C to be the trivial representation of SO(3). If we pick a basis
{~e1, ~e2, ~e3} of V , then there is a natural basis {~ei1 ⊗ ... ⊗ ~eir : i1, ..., ir = 1, 2, 3} for
the space V ⊗r. In particular, given T ∈ V ⊗r, we may write:

T = Ti1i2...ir~ei1 ⊗ ...⊗ ~eir ,

where Ti1i2...ir are the components of the tensor with respect to this basis.
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(a) Define a transposition P(i,j) : V
⊗r → V ⊗r (with 1 6 i < j 6 r) of the space of

rank-r SO(3)-tensors by:

P(i,j)(~v1 ⊗ ...⊗ ~vi ⊗ ...⊗ ~vj ⊗ ...⊗ ~vr) = ~v1 ⊗ ...⊗ ~vj ⊗ ...⊗ ~vi ⊗ ...⊗ ~vr,

and the appropriate extension by linearity. Define a trace T(i,j) : V
⊗r → V ⊗(r−2)

(with 1 6 i < j 6 r) of the space of rank-r SO(3)-tensors by:

T(i,j)(~v1⊗...⊗~vi⊗...⊗~vj⊗...⊗~vr) = (~vi · ~vj)~v1⊗...⊗~vi−1⊗~vi+1⊗...⊗~vj−1⊗~vj+1⊗...⊗~vr,

and the appropriate extension by linearity. We say that a tensor T ∈ V ⊗r is
totally symmetric if P(i,j)(T ) = T for all 1 6 i < j 6 r, and we say that a
tensor T ∈ V ⊗r is totally traceless if T(i,j)(T ) = 0 for all 1 6 i < j 6 r.

Show that a tensor T ∈ V ⊗r is totally symmetric and totally traceless if and
only if its components with respect to some basis satisfy:

T(i1...ir) = Ti1...ir , Tkki3...ir = 0.

(b) Let Wr ⊆ V ⊗r be the subset of totally symmetric, totally traceless tensors
in V ⊗r. Show that Wr is isomorphic to the (2r + 1)-dimensional irreducible
representation of SO(3).

[Hint: First, show that Wr is an invariant subspace of V ⊗r; therefore, it con-
stitutes a valid representation of SO(3). Next, apply the quadratic Casimir of
the Lie algebra so(3) to Wr and note its value. Finally, check dimensions to
conclude.]

(c) Since SO(3) is compact, V ⊗r is completely reducible. Let:

V ⊗r = V1 ⊕ V2 ⊕ ...⊕ Vm

be a decomposition of V ⊗r into irreducibles (note that the decomposition may
not be unique). By part (a), we know that for each b = 1, ...,m, there exists
some a such that Vb

∼= Wa. Let α : Wa → Vb be an isomorphism of these two
representations. Show that the components of the image α(S) are given by:

α(S)j1...jr = αi1...iaj1...jrSi1...ia ,

where αi1...iaj1...jr are the components of an SO(3)-invariant tensor.

(d) Hence, explain why the components Tij of a general rank-2 SO(3)-tensor T
may be decomposed as:

Tij = δijS + ǫijkVk + Bij (∗)

where δijS, ǫijkVk, Bij are the components of the projections of T onto irre-
ducible subspaces of V ⊗r, and Bij is totally symmetric and totally traceless.
By contracting (∗) with SO(3) invariants, determine S, Vk and Bij explicitly
in terms of Tij .

(e) Perform an analogous decomposition for the components of a rank-3 SO(3)-
tensor, Tijk (you should note in your construction that the decomposition is
not in fact unique).

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any
errors.
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