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Symmetries, Particles, and Fields

Mathematical Tripos, Part I1I

Prof M B Wingate Michaelmas Term 2024

Examples Sheet 2

N.b. The general linear group of a vector space GL(V') is the group of all automorphisms
of V', i.e. bijective, linear maps V' — V. If V is finite dimensional and a basis is chosen,
then GL(V) is isomorphic to the general linear group of matrices GL(dim V,F).

1. (Warm-up) The dihedral group D, describes the symmetries of a square and is
generated by a 90° rotation r = R(%) about its centre and a reflection m about the
vertical (say) symmetry axis.

(a)
(b)

()

Write the group multiplication table for Dy.

Show that a representation of the dihedral group, D : Dy — GL(2,R), can be
constructed using the matrices

D(r):((l) _01) and D(m):(_ol (1))

Is this a faithful representation of D47 Is it a reducible representation of D,?

Consider the subgroup Ky = {e,r*, m,mr?} (Klein’s Vierergruppe) and the
corresponding matrices used above. Show that these four matrices constitute
a reducible representation of K4, and identify the invariant subspaces.

2. The adjoint representation of the Lie group SU(2) is defined to be the map Ad :
SU(2) — GL(su(2)) given by:

Ady(X) = AX AT (%)

for all A € SU(2),X € su(2).

(a)

Show that Ad is indeed a group representation. This will require checking: (i)
for each A € SU(2), we have that Ady is an automorphism of su(2); (ii) given
A, B € SU(2), we have Adsp = Ad4 o Adp.

By writing A = I +Y + O(Y?) in (%), construct the associated adjoint repre-
sentation ad : su(2) — gl(su(2)), where gl(su(2)) is the space of linear maps
su(2) — su(2) of the Lie algebra su(2). Verify that your proposed representa-
tion of su(2) indeed constitutes a Lie algebra representation.

If d; and dy are representations of a Lie algebra L(G), show that dy @ dy is
too. Via the exponential map, show that exp(d; @ dy) = (D1 @ Ds)(exp) is
a representation of G, where you may assume that D;, where D;(exp(X)) =
exp(d;(X)) for all X € L(G), constitute well-defined representations of the Lie
group G for i € {1,2}.

Prove that the tensor product d; ®d, is a representation of L(G). Exponentiate
to show that Dy ® D, is a representation of G.
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4. Let D be a finite-dimensional representation of G acting on V', and (, ) a positive
definite inner product on V invariant under G, i.e.

(D(g)u, D(g)v) = (u,v) : u,v eV, geqG.

D is said to be unitary in this case.

(a)
(b)

Let W be an invariant subspace of V. Show that W, | the orthogonal comple-
ment of W in V| is also invariant.

Deduce that D is completely reducible.

5. (Note that this question uses physics conventions for the generators t;, such that they

are Hermitian.) Three 3 x 3 matrices t := (¢, ts, t3) are defined by (;)x = —i€;jx.
(a) Prove [t;,t;] = i€t
(b) Prove (n-t)® = [n|’n-t.

(c

)
b)
)
(d)

What are the possible eigenvalues of n-t if n is a unit vector?

We may represent a rotation by an angle # about an axis that points along
the unit vector n by the member of SO(3) R;;(n,0) := exp(—ifn-t);;. By
convention, N points in any direction and 0 < § < 7. Evaluate R;; explicitly
by summing the Taylor series of the exponential, and show that

Rij (fl, 9) = nin; + (52} - ninj) cosf — €k sin g .

Verify the formula e=%9/2 g; ¢0/2 = R..(71,0) 0 .

Given an n-dimensional representation D : G — GL(n,C) of a group G, we
can define its conjugate representation D : G — GL(n,C) by complex
conjugation: D(g) = D(g)* for all ¢ € G. If D and D are inequivalent, then
we say D is a complex representation. If D and D are equivalent, then
there exists some invertible n x n matrix S such that D(g) = SD(g)S™! for all
g € G. In this case, if ST = S, then D is said to be a real representation,
otherwise ST = —S and D is said to be pseudoreal. (These are the only two
possibilities for equivalent, finite-dimensional representations.)
The set of matrices exp(—ifn - o/2) constitutes the defining representation of
G = SU(2). Show that this representation is pseudoreal and that the conjugate
representation has the same weights as the original.

6. This question regards the explicit map of SO(3) = SU(2)/Zs.

(a)

(b)

Show that Tr(o;0;) = 20;;. Why does this imply that any 2 x 2 matrix A can
be expressed as

A= %Tr(A)[ + %Tr(o-A) -

Define a one to one correspondence between real 3-vectors and Hermitian,

traceless 2 X 2 matrices: * — @ - . Show that det(x - o) = —z°.
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(c) Next we define a transformation © — @’ by ' -0 = Az - o AT, for A € SU(2).
Deduce that «’* = &2 and so x, = R;;z; where R € SO(3). Finally, show

R;; = %Tr(aiAajAT) .
(d) Show that ¢;0,0; = —0; implies 0;ATo; = 2Tr(AT)I — AT to obtain the equa-
tions o;R;jo; = 2Tr(AT)A — I and Rj; = |Tr(A)]* — 1.
(e) Why must Tr(A) € R? Solve for Tr(A) and then A to show
I+ o;R;j0;
2\/1+Rj;

7. Finding the explicit map of SO(1,3)T = SL(2,C)/Z, follows a similar calculation
to the one finding the map of SO(3) = SU(2)/Z in QYA

A=+

(a) Defining 0, = (I,0), 0, = (I, —0o), argue that any 2 by 2 matrix A may be
written A = LTr(6#A)o,,.

(b) Now define a one-to-one correspondence between real 4-vectors x,, and hermi-
tian 2 X 2 matrices x, where z, — x = o,2". Find det x in terms of z,,.

(¢) Forany A € SL(2,C), we define a linear transformation x — 4 x’ = AxA" = 2/,

Show that 22 = 2/% and hence this must be a Lorentz transformation, so we can
write (z/)* = A#,2”, where A € SO(1,3)". Thus, show A#, = Tr(6* Ao, A")/2.
(d) To find the converse, show o, AT6" = 2Tr(A") I = A*, = |Tr(A)|* and 0, A", 5" =
2Tr(A")A and hence, for Tr(A) = e|Tr(A)|, A = e™o, A", /(2 /A",).
(e) Show that detA = 1 determines e’ up to a factor of £1. Thus +A4 < A
(A € SO(1,3)" because SL(2,C) is continuously connected to the identity).

8. For a matrix Lie group G, consider the action of G on itself by conjugation, defined
by ¢ — gg'g~!. Show that the eigenvalues of ¢’ and gg’g~' are the same for all g,
so the eigenvalues are invariants of an orbit.

Find the eigenvalues of the SU(2) matrix cosa/21 —isina/2& - o where o =
ada. Deduce the orbit structure of SU(2) under the action of SU(2) on itself by
conjugation.

9. (Optional & nonexaminable extension question. Attempt only after finishing the
questions above.) Let V be the fundamental representation of SO(3). Recall that a
rank r SO(3)-tensor is an element of the tensor product representation

VI =VRVR..QV.

r times

We define V¥ := C to be the trivial representation of SO(3). If we pick a basis
{€, €, €3} of V, then there is a natural basis {€;, ® ... ® €, : i1, ...,43, = 1,2,3} for
the space V®". In particular, given T' € V®", we may write:

T = T’i1i2~-~iTei1 X..Q €irs

where T; ;, . are the components of the tensor with respect to this basis.
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(a) Define a transposition Py jy : V& — V& (with 1 <1 < j < r) of the space of
rank-r SO(3)-tensors by:

Pip)(th®. QUi®.0U0,®.00)=01Q..00,8..0 4 ® ... ® U,

and the appropriate extension by linearity. Define a trace T(; ;) : V®" — V=2
(with 1 < < j < r) of the space of rank-r SO(3)-tensors by:

T5.5) (1 ®...QU;®...QT;®...Q,) = (T; - U;) 11®...0T;—1 @T;41®...QU;_1QU; 41 &...Q,
and the appropriate extension by linearity. We say that a tensor T € V®" is

totally symmetric if Py ;(T) = T for all 1 <4 < j < r, and we say that a
tensor T' € V¥ is totally traceless if T(; j(T) =0 for all 1 <i < j <.

Show that a tensor T' € V" is totally symmetric and totally traceless if and
only if its components with respect to some basis satisfy:

Tiiy.ivy = Tiyiy - Thiig.ir = 0.

(b) Let W, C V®" be the subset of totally symmetric, totally traceless tensors
in V®". Show that W, is isomorphic to the (2r + 1)-dimensional irreducible
representation of SO(3).

[Hint: First, show that W, is an invariant subspace of V" therefore, it con-
stitutes a valid representation of SO(3). Next, apply the quadratic Casimir of
the Lie algebra s0(3) to W, and note its value. Finally, check dimensions to
conclude.]

(c) Since SO(3) is compact, V®" is completely reducible. Let:
VI =VaVe.. 6V,

be a decomposition of V®" into irreducibles (note that the decomposition may
not be unique). By part (a), we know that for each b = 1,...,m, there exists
some a such that V, = W,. Let o : W, — V} be an isomorphism of these two
representations. Show that the components of the image «(S) are given by:

O‘(S)jl.A.jT = ail...iajl...jTSil...ia;
where o, ;... are the components of an SO(3)-invariant tensor.
(d) Hence, explain why the components T;; of a general rank-2 SO(3)-tensor T
may be decomposed as:
Tij = 05 + € Vi + Bij (*)
where 0,5, €;;1Vi, Bi;j are the components of the projections of 1" onto irre-
ducible subspaces of V®", and By; is totally symmetric and totally traceless.

By contracting (x) with SO(3) invariants, determine S, V), and B;; explicitly
in terms of T;;.
(e) Perform an analogous decomposition for the components of a rank-3 SO(3)-

tensor, T;;; (you should note in your construction that the decomposition is
not in fact unique).

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any
eITors.
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