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Symmetries, Particles, and Fields Mathematical Tripos, Part III
Prof M B Wingate Michaelmas Term 2024

Examples Sheet 3

1. Schur’s Lemma is “Let D be an irreducible representation of a (Lie) group G acting
on a complex vector space V . Let A be an operator acting on V which commutes
with the action of G, that is, AD(g) = D(g)A for all g ∈ G. Then A = λIV , where
λ is a constant and IV is the unit operator.”

Prove this by showing that any eigenspace of A is an invariant subspace of V , and
that there is therefore precisely one eigenspace of A which is the whole of V , and
that this gives the desired result.

2. The following multiplication rule will be useful in this question (cf. Sheet 1, 3c):

(aI + b · σ)(a′I + b′ · σ) = (aa′ + b · b′)I + (ab′ + a′b+ ib× b′) · σ .

(a) Show how B(ψ,n) ∈ SL(2,C), where

B(ψ,n) = I cosh
ψ

2
+ σ · n sinh

ψ

2
, n · n = 1 ,

corresponds to a Lorentz boost with velocity v = tanhψ n.

(b) Show that
(

I +
1

2
σ · δv

)

B(ψ,n) = B(ψ′,n′)R,

where, to first order in δv,

ψ′ = ψ + δv · n, n′ = n+ cothψ[δv − n(n · δv)],

and R is an infinitesimal rotation given by

R = I +
i

2
tanh

ψ

2
(δv × n) · σ = I +

i

2

γ

γ + 1
(δv × v) · σ, γ = (1− v2)−

1

2 .

(c) Show that we must have v′ = v + δv − v(v · δv).
(d) By considering boosts by velocities v,w followed by boosts by −v, −w, find

a physical interpetation of this question.

3. A field φ(x) transforms under the action of a Poincaré transformation (Λ, a) such
that U [Λ, a]φ(x)U [Λ, a]−1 = φ(Λx+ a). For an infinitesimal transformation, Λµ

ν =
δµν + ωµ

ν and correspondingly (in physics conventions) U [Λ, a] = 1 − i1
2
ωµνMµν −

iaµPµ.

(a) Show that

[Mµν , φ(x)] = −i(xµ∂ν − xν∂µ)φ(x) , [Pµ, φ(x)] = i∂µφ(x) .
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(b) Verify that Mµν → i(xµ∂ν − xν∂µ) and Pµ → −i∂µ satisfy the algebra for
[Mµν ,Mσρ] and [Mµν , Pσ] expected for the Poincaré group.

4. Consider the little group with standard momentum kµ = (ℓ, 0, 0, ℓ), for some fixed
ℓ > 0, that is, the subgroup of proper, orthochronous Lorentz transformations which
leaves kµ invariant.

(a) Show how the generators of the little group are related to the generators of
SO(1, 3)↑. [Hint: It will be convenient to define E1 := K1 − J2 and E2 :=
K2 + J1.] Find the structure constants of the corresponding Lie algebra and
determine whether it is semisimple. [Note: this group is ISO(2), the isometry
group of the plane, or the 2-dimensional Euclidean group.]

(b) Prove that, for appropriately normalized generators,

eθJ3(a1E1 + a2E2)e
−θJ3 = α1(θ)E1 + α2(θ)E2 ,

where θ, a1, a2 ∈ R and
(

α1(θ)
α2(θ)

)

=

(

cos θ − sin θ
sin θ cos θ

)(

a1
a2

)

.

(c) Defining a unitary operator O[θ, a1, a2] = ea1E1+a2E2 eθJ3 , show that

O[θ′, a′1, a
′
2]O[θ, a1, a2] = O[θ′ + θ, α1(θ

′) + a′1, α2(θ
′) + a′2] .

Deduce from this that ISO(2) is isomorphic to SO(2) ⋉ T 2, where T 2 is the
2-dimensional translation group.

(d) Take |k, e1, e2〉 to be an eigenvector of E1 and E2 with eigenvalues e1 and e2,
respectively. Show that there are a continuum of eigenvalues for E1 and E2.
Given that massless states like neutrinos do not have a continuous internal
degree-of-freedom, what does that imply about physically allowed values e1
and e2?

5. Show that there is a choice of basis for L(SO(4)) consisting of 4 × 4 antisymmet-
ric matrices that contain precisely two non-zero entries: 1 and −1. Evaluate the
commutation relations of these generators. By choosing a new basis consisting
of sums and differences of pairs of L(SO(3)) generators, show that L(SO(4)) ∼=
L(SO(3))⊕ L(SO(3)).

6. Let {T i
j} be n× n matrices such that T i

j has a 1 in the i’th row and j’th column
and is zero otherwise.

(a) Show that they satisfy the Lie algebra

[T i
j, T

k
l] = δkjT

i
l − δilT

k
j.

(b) Define X = T i
jX

j
i with arbitrary components Xj

i. Determine the adjoint
matrix (Xad)nm,

k
l by

[X,T k
l] = Tm

n(X
ad)nm,

k
l,

and show that

κ(X, Y ) = Tr
(

XadY ad
)

= 2
(

n
∑

i,jX
j
iY

i
j −

∑

iX
i
i

∑

jY
j
j

)

.
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(c) Show that 1 + ǫX ∈ U(n) for infinitesimal ǫ if (Xj
i)
∗ = −X i

j.

(d) Hence show that in this case

κ(X,X) = −2n
∑

i,j|X̂j
i|2, X̂j

i = Xj
i − 1

n
δj i

∑

kX
k
k,

and therefore κ(X,X) = 0 ⇔ Xad = 0.

(e) What restrictions must be made for SU(n) and verify that in this case the
generators satisfy κ(X,X) < 0 so the group is semi-simple?

7. For a simple Lie algebra g, with elements Xa such that [Xa, Xb] = fabcXc where fabc
is totally antisymmetric, let T̃a be matrices forming a basis for representation R of
g, and assume T̃aT̃a = CRI. Define

〈Xa, Xb〉 = Tr(T̃aT̃b)
dim g

CR dimR
.

(a) Let g = su(2). Evaluate 〈J3, J3〉 in the j-th irreducible representation of su(2)
and show that the result is independent of j.

(b) For su(3) show that the Gell-Mann representation, T̃a = i
2
λa, where the Gell-

Mann matrices λa are given below, gives the same value for 〈Xa, Xb〉 as does
the adjoint representation (T ad

a )bc = fabc.

[The Gell-Mann matrices are

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0



 λ4 =





0 0 1
0 0 0
1 0 0





λ5 =





0 0 −i

0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0



 λ7 =





0 0 0
0 0 −i

0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .]

(c) It can be shown that the Killing form on a simple Lie algebra is the unique
ad-invariant, symmetric bilinear form, up to an overall scalar multiple. How
do you interpret your calculations above in relation to this fact?

8. The Lie algebra of U(n) may be represented by a basis consisting first of the n2−n

off-diagonal matrices (Eij)kl = δikδjl for i 6= j and also the n diagonal matrices
(hi)kl = δikδkl, (no sum on k), where i, j, k, l = 1, . . . n. For SU(n) it is necessary to
restrict to traceless matrices given by hi − hj for some i, j. The n− 1 independent
hi − hj correspond to the Cartan subalgebra.

(a) Show that

[hi, Ejk] = (δij − δik)Ejk, [Eij, Eji] = hi − hj (no summation convention).

(b) Let ei be orthogonal n-dimensional unit vectors, (ei)j = δij. Show that Eij is
associated with the root vector ei − ej.

(c) Hence show that there are n(n− 1) root vectors belonging to the n− 1 dimen-
sional hyperplane orthogonal to

∑

i ei.
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(d) Verify that we may take as simple roots

α1 = e1 − e2, α2 = e2 − e3, . . . , αi = ei − ei+1, . . . , αn−1 = en−1 − en,

by showing that all roots may be expressed in terms of the αi with either
positive or negative integer coefficients.

(e) Determine the Cartan matrix and write down the corresponding Dynkin dia-
gram. [You may assume the Killing form is diagonal.]

Please e-mail me at M.Wingate@damtp.cam.ac.uk with any comments, especially any
errors.
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