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Statistical Field Theory: Example Sheet 2

Harvey Reall, Michaelmas 2024

Comments and corrections to hsr1000@cam.ac.uk.

1. The purpose of this question is to evaluate the asymptotic behaviour of the integral

G(x) =

∫

ddk

(2π)d
e−ik·x

γk2 + µ2
=

1

γ

∫

ddk

(2π)d
e−ik·x

k2 + 1/ξ2

where the correlation length is defined as ξ2 = γ/µ2. First, why does G(x) depend

only on r = |x|? Show that

1

k2 + 1/ξ2
=

∫ ∞

0

dt e−t(k2+1/ξ2)

Use this to massage the original
∫

ddk integrations into Gaussian form and hence show

that, ignoring an overall prefactor,

G(r) ∼

∫ ∞

0

dt e−S(t) with S(t) =
r2

4t
+

t

ξ2
+
d

2
log t

Evaluate this using the saddle point expression
∫ ∞

0

dt e−S(t) ≈

∫ ∞

0

dt e−S(t⋆)−S′′(t⋆)t2/2 =

√

π

2S ′′(t⋆)
e−S(t⋆)

where S ′(t⋆) = 0 is the minimum of S(t). Find the saddle point in the two regimes

r ≪ ξ and r ≫ ξ to derive the Ornstein-Zernicke correlation

G(r) ∼











1/rd−2 r ≪ ξ

e−r/ξ/(ξ(d−3)/2r(d−1)/2) r ≫ ξ

2. Show that the correlation function is a Green’s function, obeying

(−γ∇2 + µ2) 〈φ(x)φ(0)〉 ∼ δ(x)

What is the physical interpretation of this?

3. Download a simulator for the 2d Ising model; you can find examples, in several

different formats, at http://physics.weber.edu/thermal/computer.html. (Writing your

own is also allowed.) Play with different temperatures and different initial conditions.
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4. Scaling at a fixed point gives equalities between critical exponents. The purpose

of this question is to show that less stringent inequalities follow from thermodynamics

alone. Like many problems in thermodynamics, this involves taking lots of partial

derivatives.

For a magnetic system, the first law of thermodynamics is

dE = TdS −MdB

with E the internal energy, M the magnetisation and B the applied magnetic field. By

considering other functions of state, such as the free energy F = E − TS, derive the

Maxwell relations
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Define the heat capacities at constant magnetic field CB and constant magnetisation

CM , and the susceptibility χ

CB = T
∂S

∂T

∣

∣

∣

∣

B

, CM = T
∂S

∂T

∣

∣

∣

∣

M

, χ =
∂M

∂B

∣

∣

∣

∣

T

Show that

χ(CB − CM) = T

(

∂M

∂T

∣

∣

∣

∣

B

)2

Hint: To show this you will need the following identities involving partial derivatives
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∣

∣
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For B = 0, as we approach the critical point from below, T → Tc, various thermody-

namic quantities scale as

CB ∼ (Tc − T )−α , M ∼ (Tc − T )β , χ ∼ (Tc − T )−γ

Show that if CM ≥ 0 then the exponents must obey the so-called Rushbrooke inequality,

α + 2β + γ ≥ 2

What stronger statement can we make using scaling arguments?
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5*. An anisotropic material is described by the Lifshitz theory. This has a preferred

direction, x = (x, ~y), where ~y is a (d − 1) dimensional vector. Ignoring interactions,

the free energy is

F [φ] =

∫

ddx
1

2
(∂xφ)

2 +
1

2
(~∇2φ)2 +

1

2
µ2
0 φ

2

Note that the gradient term is quadratic in the x-direction, and quartic in the ~y-

directions.

Write the free energy in Fourier space, with momentum k = (k, ~q). Set up a renormal-

isation group transformation in which the momenta and field scale as

k′ = ζk , ~q ′ = ζa~q , φ′
k′ = ζ−bφk

Determine a and b by requiring that both gradient terms remain canonically normalised.

Determine µ2(ζ).

Returning to real space, what is the scaling dimension ∆φ of the field φ(x) about

the Gaussian fixed point? Consider the interaction

∫

ddx gnφ
2n

What is the scaling dimension of gn? Show that the φ4 interaction is relevant for d < 7

and irrelevant for d > 7.

6. Consider the free energy for a complex scalar field ψ coupled to a gauge field Ai,

F [ψ,Ai] =

∫

ddx
1

4
FijF

ij + |∂iψ − ieAiψ|
2 + µ2|ψ|2

where Fij = ∂iAj − ∂jAi. (As an aside: if we add a quartic term g|ψ|4 then, in d = 3,

this is the original Ginzburg-Landau free energy for a superconductor.)

Neglecting interactions, what is the critical dimension dc, such that the coupling

between the scalar and gauge field is relevant for d < dc and irrelevant for d > dc?

Speculate on what might happen at d = dc. (Computing the RG flow for the coupling

e in dimension d = dc will be part of next term’s Advanced Quantum Field Theory

course.)
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7*. A microscopic system sits on a cubic lattice in d dimensions and, at large distances,

is described by a local order parameter φ(x), with φ → −φ symmetry. What is the

simplest interaction of φ that is compatible with the underlying discrete rotational

symmetry, but not SO(d) rotational symmetry? Explain using scaling arguments why

the long distance physics exhibits the full SO(d) invariance.

8. Consider n variables φa drawn from a Gaussian ensemble such that, for any function

f(φ), the expectation value is

〈f(φ)〉 =
1

N

∫ ∞

−∞

dnφ f(φ) e−
1

2
φ·G−1φ

where G is an invertible symmetric n× n matrix and N = det1/2(2πG). Show that

〈φaφb〉 = Gab

Hence prove “Wick’s identity”,

〈

eBaφa

〉

= e
1

2
Ba〈φaφb〉Bb

for any constant Ba. By Taylor expanding both sides, show that

〈φaφbφcφd〉 = 〈φaφb〉〈φcφd〉+ 〈φaφc〉〈φbφd〉+ 〈φaφd〉〈φbφc〉

Show further that 〈φa1 . . . φal〉 = 0 for l odd. Derive an expression for 〈φa1 . . . φal〉 when

l is even.
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