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Supersymmetry and Extra Dimensions:

Example Sheet 4

Corrections and suggestions should be emailed to f.quevedo@damtp.cam.ac.uk

Exercise 4.1: Consider the Schrédinger equation for a particle moving in two dimensions x and y.
The second dimension is a circle or radius . The potential corresponds to a square well (V(z) = 0 for
x € (0,a) and V = oo otherwise). Derive the energy levels for the two-dimensional Schrédinger equation

and compare the result with the standard one-dimensional situation in the limit r < a.

Exercise 4.2: Consider the following Lagrangian
1
S = /d4x <92 Hp, HYP 4 a €' ap,Hl/p0'> .

Solve the equation of motion for the Lagrange multiplier a to obtain an action for a propagating massless
Kalb-Ramond field B,,,,. Alternatively, solve the equation of motion for the field H, ., to obtain an action
for the propagating axion field a. What happens to the coupling g under this transformation? Generalise

your result for arbitrary dimensions and ranks of the tensors.

Exercise 4.3: Consider a massive antisymmetric tensor of rank ¢ in D dimensions. Write up its
Lagrangian up-to second derivatives. Describe a general Lagrangian that can reproduce the original
Lagrangian and its dual. Determine the degrees of freedom of the original and dual tensors. Interpret

this dualisation in terms of a functional Fourier transform. Can this also be used in the massless case?

Exercise 4.4 On spacetimes with Lorentzian signature show that only in dimensions D = 4k + 2 there
can be self-dual antisymmetric tensors. How many degrees of freedom do they have? What kind of

p-branes they couple to? Explain the difference, if any, with Fuclidean spaces.

Exercise 4.5: Show that the Kaluza-Klein dimensional reduction from D = 5 to D = 4 follows from
a pure gravitational theory in five-dimensions, using )R = (R — 2e7V?2e? — ieQ"FWF’“’ where

G55 = €27, Relate the gauge transformation to the U(1) isometry of the compact space.

Exercise 4.6 Demonstrate that the volume of a NV — 1 sphere of radius r is

orV/2 N1
VN_1 = WT (1)

Hint: It may help to consider the integral Iy = falee*p2 with p? = Zfil x2. Use this result to derive

an expression for the electric (and gravitational) potential in D dimensions. Show that the potential due
to a point particle in five dimensions reduces to the 4-dimensional potential at distances much larger than

the size of the fifth dimension.
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Exercise 4.7: Consider a five dimensional gravity theory with a negative cosmological constant A < 0,
compactified on an interval (0, 7). Each end of the interval corresponds to a ’3-brane’ which we choose
to have tension £A/k respectively. Here k is a common scale to be determined later in terms of the

fundamental scale in 5D M, and A. Verify that the warped metric
ds> = e 2O p,, datdz” — r2d6?

satisfies Einstein’s equations. Here W = =24 is the warp factor and r is a constant measuring the

size of the interval. You can use that Einstein’s equations reduce to

6 A" A 3A" A
r? 2M3 7 r2 2 M3 kr [0 =) (0)]
Solve for A(#) and use the warp factor to show that the effective 4D Planck scale is now
T _ M3 ok
Mglefr/_daezA: (1= e

Find the value of the constant k. Consider the Higgs Lagrangian on the brane at § = m, bring it into
canonical form and show that the mass is proportional to the factor e *™". How large can 7 be in order
to reproduce the electroweak scale from the Planck scale? Does this solve the hierarchy problem? How

does the Planck scale differ from the 5D scale M.,?

Exercise 4.8: Imagine that it were possible to have particles with all possible spins up to j = 3. What

would the maximum dimensionality of spacetime be consistent with supersymmetry?

Exercise 4.9: Starting with the field contents of ITA and IIB supergravities in D = 10 perform the
dimensional reduction to D = 9 and count the number of degrees of freedom for each multiplet. Is
the spectrum chiral? Perform directly the reduction from D = 11 to D = 9 and compare. Perform
dimensional reduction of IIB supergravity in D = 10 all the way to D = 4 and compare the number of

degrees of freedom.

Exercise 4.10: Consider A = 1 supergravity with three chiral superfields S, T, and C. In Planck units,

the Kéhler potential and superpotential are given by

K

—log(S+5*) — 3log(T+T*—CC™)

w C® + ae @ + b,

where a, b are arbitrary complex numbers and o > 0. Compute the scalar potential. Find the auxiliary
field for S, T, C and verify that supersymmetry is broken. Assuming that C' denotes a matter field with
vanishing vev, find a minimum of the potential. Are there flat directions? A typical K&hler potential

derived from string compactifications takes the form
K = —-3logI'(m;) (2)

where I' is a homogeneous function of degree one of moduli fields 7;. Using the homogeneity equations

7;I; =T and 7,T';; = 0 (where I'; = 0T'/0;, etc. ) show that
Ky =30;/T,  I;K;'T;/T? =1/3

and deduce from this that if the superpotential does not depend on the 7; fields then the corresponding

contribution to the N = 1 supergravity scalar potential V' vanishes.



