
C
op

yr
ig

ht
 ©

 2
02

3 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Mathematical Tripos Part III Lent Term 2025
Black Holes: Example Sheet 1 J.E. Santos

1. Let V a be a vector field. Show that

∇aV
a =

1√−g
∂µ

(√−gV µ
)

2. Let X be a vector field and Y be a p-form. Show that

LXY = iXdY + d (iXY ) ,

where, for a q-form Z, iXZ is the (q − 1)-form resulting from contracting X with the first index
of Z.

3. A conformal Killing vector field is a vector field k such that

Lkgab = φgab

for some function φ. (i) Use the geodesic equation to show that the existence of a conformal
Killing vector field implies the existence of a conserved quantity along null geodesics. (ii) Show
that if k is a conformal Killing vector field for the metric g then it is also a conformal Killing
vector field for the metric Ω2g where Ω is any positive function.

4. (a) Use the Tolman-Oppenheimer-Volkoff equations for dm/dr and dΦ/dr to eliminate ρ and p
from the equation for dp/dr. Show that the resulting equation can be written as

(

e−Ψr−1ζ ′
)′

=
(m

r3

)

′

eΨζ

where ζ = eΦ and a prime denote d/dr.

(b) Use dρ/dr ≤ 0 to argue that (m/r3)′ ≤ 0. (Hint: the formula relating m and ρ is the same as
the formula for the mass of a ball of matter of radius r in Euclidean space. In Euclidean space
m/r3 is proportional to the average density.)

(c) It follows that
(

e−Ψr−1ζ ′
)

′ ≤ 0. By integrating this equation from r1 to r and using the
equation for dΦ/dr, show that, for any r1 ≤ r,

ζ ′(r1) ≥
(

1− 2m(r)

r

)

−1/2(m(r)

r3
+ 4πp(r)

)

ζ(r)r1

(

1− 2m(r1)

r1

)

−1/2

(d) (m/r3)′ ≤ 0 implies m(r1)/r1 ≥ m(r)r2
1
/r3 for r1 ≤ r. Use this to show

∫ r

0

r1

(

1− 2m(r1)

r1

)

−1/2

dr1 ≥
r3

2m(r)

[

1−
(

1− 2m(r)

r

)1/2
]

(e) Deduce that

ζ(0) ≤ ζ(r)

{

1−
(

1

2
+

2πr3p(r)

m(r)

)

[

(

1− 2m(r)

r

)

−1/2

− 1

]}

(f) By definition ζ is everwhere positive. In particular ζ(0) > 0. Deduce that

m(r)

r
<

2

9

{

1− 6πr2p(r) + [1 + 6πr2p(r)]1/2
}
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5. Consider a static, spherically symmetric, star made from incompressible matter, i.e., constant
density ρ. Let M and R be the mass and radius of the star. Obtain an expression for the pressure
pc at the centre of the star in terms of ρ, and M/R. Show that such stars can get arbitrarily
close to saturating Buchdahl’s inequality M/R < 4/9.

6. Starting from the Schwarzschild solution in Schwarzschild coordinates, define a new coordinate
T by dT = dt+ F (r)dr. (i) Show that one can choose F (r) so that in coordinates (T, r, θ, φ), a
surface of constant T is flat. (ii) Show that the metric in the new coordinates can be extended
across r = 2M . You should find two choices of sign for F (r): what do these correspond to?
(These coordinates are called Painlevé-Gullstrand coordinates.)

7. Consider a null geodesic incident from infinity on a Schwarzschild black hole. Let E and h denote
the conserved quantities associated with the timelike Killing field and the angular Killing field
∂/∂φ.

(a) Show that the maximum value for the impact parameter b ≡ |h/E| for which the geodesic
falls into the black hole is bmax = 3

√
3M .

(b) Determine the geometrical interpretation of the impact parameter by considering φ as a
function of r at large r.

(c) Hence show that the geodesics that fall into the hole are the same as those that would be
absorbed by a perfectly absorbing disc of radius bmax in Minkowski space-time. (Therefore the
photon absorption cross-section of the black hole is πb2max = 27πM2.)

8. Consider a toy model for gravitational collapse in which we model the collapsing star as a ball
of dust, i.e., a perfect fluid with vanishing pressure. This implies the fluid velocity satisfies the
geodesic equation. By continuity, particles on the surface of the star will follow geodesics of the
Schwarzschild metric. Assume that the star starts from rest at radius r = r0 > 2M . Using ingoing
Eddington-Finkelstein coordinates, determine the proper time it takes for the star’s surface to
reach (i) r = 2M , (ii) r = 0. (c) Show that the star reaches r = 0 in finite EF coordinate time
v.

9. Using Schwarzschild coordinates, show that every timelike curve in region II of the Kruskal
manifold intersects the singularity at r = 0 within a proper time no greater than πM . For what
curves is this bound attained?

10. (a) Let Σ be an Einstein-Rosen bridge, i.e., a surface of constant t, in the Kruskal spacetime.
The geometry of Σ can be visualized by embedding it into four-dimensional Euclidean space.
In cylindrical polar coordinates, the metric is ds2 = dR2 + R2dΩ2 + dz2. Consider a surface
R = R(ρ), z = z(ρ). Show that R(ρ) and z(ρ) can be chosen so that this surface has the same
metric as Σ (use isotropic coordinates on Σ). Give a sketch of this embedding of Σ into flat space
(suppressing the coordinate θ). Could someone in region I travel across the bridge to visit region
IV?

(b) Show that the geometry of a surface of constant r in region II (or III) of the Kruskal manifold
is the same as that of an infinite cylinder embedded in R4.

11. (⋆⋆) Consider the 4−dimensional action

I =
1

16π

∫

dx4
√−g

(

R− 2∇aφ∇aφ− e−2φF abFab

)

, (†)
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where R is the Ricci scalar, φ is a scalar field and Fab is the usual electromagnetic strength tensor,
given in terms of Aa as Fab = ∂aAb − ∂bAa.

(a) What are the equations of motion derived from (†)?
(b) Show that the equations of motion derived in (a) admit spherically symmetric black hole
solutions of the form

ds2 = −V (r)dt2+
dr2

V (r)
+R(r)2(dθ2+sin2 θdϕ2) , A = Q cos θdϕ , φ(r) = φ0−

1

2
log

(

1− Q2e−2φ0

rM

)

.

where

R2(r) = r

(

r − Q2

M
e−2φ0

)

and V (r) = 1− 2M

r
.

12. (⋆⋆) Consider the following line element

ds2 = ℓ2
(

−r2zdt2 +
dr2

r2
+ r2dxidxjδij

)

,

where i, j ∈ {2, . . . , d−1}. Show that all the components of the Riemann tensor in an orthonormal
basis are finite, and therefore that all curvature invariants constructed from the Riemann tensor
are also finite. Prove that, nevertheless, if z 6= 1 there is a curvature singularity at r = 0 due to
diverging tidal forces.
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