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Mathematical Tripos Part III Lent Term 2025
Black Holes: Examples Sheet 2 J.E. Santos

1. A general static, spherically symmetric metric can be written

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dΩ2,

where dΩ2 is the metric on a unit 2-sphere. Assume that A(r) and B(r) are analytic functions
of r such that both have a simple zero at r = r+ > 0 and are positive for r > r+.

(a) Show that radial null geodesics are given by t± r∗ = constant, where

r∗ ≡

∫ r

r0

dx
√

A(x)B(x)
,

with r0 > r+ an arbitrary constant. Show that r∗ → −∞ as r → r+.

(b) Obtain the metric in ingoing Eddington-Finkelstein coordinates. Explain why this metric
can be analytically continued through r = r+.

2. Consider a particle with 4-velocity U in a stationary, asymptotically flat, space-time with timelike
Killing vector field k. E = −k · U has the interpretation of ”energy per unit mass measured at
infinity” if the particle moves on a geodesic. For non-geodesic motion, this equation is used to
define ”energy per unit mass measured at infinity.”

(a) Consider a unit mass particle P following an orbit of k at radius r = rP > 2M in the
Schwarzschild spacetime. Assume that the force making this particle accelerate comes from a
radial massless inelastic string, whose other end is held by an observer Q at infinity. If Q pulls
the string through proper distance δS then what is the change δrP in rP ?

(b) What is the change δE in the energy of P measured by Q? This must equal the work FδS
done by Q where F is the force that the string exerts on Q, i.e., the tension at Q. Calculate F .
Show that F → 1/(4M) as rP → 2M . What is the force measured by P as rP → 2M?

3. Use isotropic coordinates to prove that a surface of constant t in the Schwarzschild spacetime is
an asymptotically flat end with Kab = 0.

4. (a) Let (M, g) be the 2d Einstein static Universe with metric ds2 = −dt2+dφ2 where φ ∼ φ+2π.
Let S be the surface t = 0. Determine D+(S) and J+(S). (b) Do the same where (M, g) is now
the spacetime obtained by deleting the point t = φ = 0 from the Einstein static Universe. (c)
Do the same for the Kruskal spacetime where S is the surface t = 0 in region I.

5. A perfect fluid has stress tensor Tab = (ρ + p)uaub + pgab, where ρ is the energy density, p the
pressure, and ua the 4-velocity of the fluid. Show that

(a) the dominant energy condition is obeyed if, and only if, ρ ≥ |p|;

(b) the weak energy condition is obeyed if, and only if, ρ ≥ 0 and ρ+ p ≥ 0;

(c) the null energy condition is obeyed if, and only if, ρ+ p ≥ 0;

(d) the strong energy condition is obeyed if, and only if, ρ+ 3p ≥ 0 and ρ+ p ≥ 0.

A cosmological constant has p = −ρ. Which energy conditions does it violate? (Consider both
signs for ρ.)
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6. Consider two Lorentzian metrics on a manifoldM related by a conformal transformation ḡ = Ω2g
where Ω is a positive function on M .

(a) Show that g and ḡ have the same null geodesics.

(b) Show that the Ricci tensor of g is related to the Ricci tensor of ḡ by

Rab = R̄ab + 2Ω−1∇̄a∇̄bΩ+ ḡabḡ
cd

(

Ω−1∇̄c∇̄dΩ− 3Ω−2∂cΩ∂dΩ
)

where ∇̄ is the Levi-Civita connection associated with ḡ.

(c) Let ψ be a solution of the equation

gab∇a∇bψ + ξRψ = 0

We say that the equation is conformally covariant if there exists a constant p such that ψ̄ ≡ Ωpψ
is a solution of the equation in a spacetime with metric ḡ = Ω2g whenever ψ solves the equation
in a spacetime with metric g. Determine the value of ξ for which this equation is conformally
covariant.

7. The Robinson-Bertotti metric is

ds2 = −λ2dt2 +M2

(

dλ

λ

)2

+M2dΩ2

This is the product AdS2 × S2 where AdS2 denotes 2d anti-de Sitter spacetime. By replacing
the time coordinate t by one of the radial null coordinates u = t+M/λ, v = t−M/λ show that
the singularity at λ = 0 is merely a coordinate singularity. By introducing the new coordinates
(U, V ), defined by u = tan(U/2), v = − cot(V/2), obtain the maximal analytic extension of the
RB metric and deduce its Penrose diagram (more precisely: deduce the Penrose diagram of the
AdS2 part of the RB metric). Is this spacetime globally hyperbolic?

8. Determine the Penrose diagram of de Sitter spacetime with metric

ds2 = −dt2 +H−2 cosh2(Ht)(dχ2 + sin2 χdΩ2)

where H > 0 is a constant and 0 ≤ χ ≤ π ((χ, θ, φ) parameterize a round 3-sphere). (Hint. Use a
coordinate transformation t = t(η) to bring the metric to a form where it is manifestly conformal
to the Einstein static Universe.)

9. Consider a vacuum spacetime that is asymptotically flat at null infinity. In lectures we introduced
coordinates (u,Ω, θ, φ) such that I+ is Ω = 0 and the ”unphysical” metric satisfies

ḡ|Ω=0 = 2dudΩ+ dθ2 + sin2 dφ2

and, for small non-zero Ω, the corrections to this are O(Ω) except for the uu, uθ and uφ com-
ponents which are O(Ω2), and the ΩΩ component which vanishes everywhere. The physical
metric is g = Ω−2ḡ. Introduce a new coordinate r = 1/Ω and determine the form of the physical
metric for large r, keeping track of the size of the subleading corrections. You should find that
the uu component is O(1). Show that this component can be set to −1 + O(1/r) by a shift
r → r + f(u, θ, φ). Finally define ”asymptotically inertial” coordinates (t, x, y, z) by t = u + r
and (x, y, z) related to (r, θ, φ) as for spherical polars. Show that the spacetime metric becomes
−dt2 + dx2 + dy2 + dz2 with corrections that are O(1/r) at large r.


