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Mathematical Tripos Part III Lent 2025
Black Holes: Examples Sheet 4 J.E. Santos

1. This example works through the proof of the zeroth law of black hole mechanics. Let N be a
Killing horizon of a Killing vector field ξ with surface gravity κ.

(a) If we know that A = 0 on N for some tensor Aa1...ap then A · B ≡ Aa1...apB
a1...ap = 0 on

N for any tensor Ba1...ap . Hence N is a surface of constant A · B, so d(A · B) is normal to N
hence ξ ∧ d(A · B) = 0 on N . (i) Show that this implies ξ[a∇b]Ac1...cp = 0 on N . (ii) Taking

Aa = ξb∇bξa − κξa, use this (and the formula ∇a∇bξc = Rd
abcξd) to show

ξaξ[d∇c]κ+ κξ[d∇c]ξa =
(

ξ[d∇c]ξ
b
)

∇bξa + ξbξ[dR
e
c]baξe on N . (1)

(b) Using Frobenius’ theorem, show that

ξc∇aξb = −2ξ[a∇b]ξc on N . (2)

Hence show that
(

ξ[d∇c]ξ
b
)

∇bξa = κξ[d∇c]ξa on N , so equation (1) reduces to

ξaξ[d∇c]κ = ξbξ[dR
e
c]baξe on N . (3)

(c) Set Aabc = ξc∇aξb + 2ξ[a∇b]ξc and use the result of (a)(i) and equation (2) to show that

ξcξ[d∇e]∇aξb = −2
(

ξ[d∇e]∇[bξ|c|
)

ξa] on N .

and hence
ξcξ[dR

f
e]abξf = 2ξ[dR

f
e]c[bξa]ξf on N .

(d) Contract this equation on the indices c and e, show that the LHS vanishes and the resulting
equation can be written

−ξ[aRb]
fξfξd = ξ[aR

f
b]cdξ

cξf on N .

Hence show that equation (3) reduces to

ξ[d∇c]κ = −ξ[dRc]
fξf on N .

As (will be) explained in lectures, if the Einstein equation and the dominant energy condition
are satisfied, then the RHS vanishes and hence κ is constant on the horizon.

2. In a stationary, axisymmetric, asymptotically flat, black hole spacetime, let Σ denote an asymp-
totically flat spacelike hypersurface that intersects H+ in a 2-sphere H. Let ξ = k + ΩHm be
the Killing field normal to the horizon. By considering the expression (for appropriate choices of
orientation)

∫

S2
∞

⋆dξ −
∫

H
⋆dξ =

∫

Σ
d ⋆ dξ ,

derive the Smarr relation

M = −
∫

Σ
⋆J ′ + 2ΩHJ +

κA

4π
,

where J ′
a ≡ −2 [Tab − (1/2)Tgab] ξ

b.
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3. Let (M, g, F ) be a stationary, axisymmetric, asymptotically flat, black hole solution of the
Einstein-Maxwell equations. Assume that it is possible to choose a gauge so that

LkA = LmA = 0 ,

The co-rotating electric potential is defined by

Φ = −ξaAa .

Use Einstein equation, and the fact that Rabξ
aξb = 0 on a Killing horizon, to show that Φ is

constant on the horizon. In particular, show that, for a choice of gauge for which Φ = 0 at
infinity, the value of Φ on the horizon is

ΦH =
Qr+

r2+ + a2

for an electrically charged Kerr-Newman black hole, where r+ = M +
√

M2 −Q2 − a2.

4. Let (M, g, F ) be an asymptotically flat, stationary, axisymmetric, black hole solution of the
Einstein-Maxwell equations and let Σ be a spacelike hypersurface with one boundary at spatial
infinity and an internal boundary, H, at the event horizon of a black hole of charge Q. Show
that the Smarr relation can be written

M =
κA

4π
+ 2ΩHJ +ΦHQ .

[Hint: Lξ(F
abAb) = 0 ]

5. Use the canonical commutation relations to derive [a(f), a(g)†] = (f, g) and [a(f), a(g)] = 0.

6. Let k be a future-directed timelike Killing vector field in a globally hyperbolic spacetime. Show
that Lk is anti-hermitian with respect to the Klein-Gordon inner product. Show that positive
frequency solutions have positive Klein-Gordon norm.

7. Consider a 2d cosmological spacetime with metric ds2 = A(η)2
(−dη2 + dx2

)

. Assume that a(η)
takes a constant positive value A− or A+ for η < 0 and η > 0 respectively. (The metric is
discontinuous, but we can regard it as an approximation to a metric in which A varies smoothly
from A− to A+ in a very short time. Birrell and Davies (section 3.4) discuss this smooth case.)
Let M−, M+ denote the regions η < 0 and η > 0 respectively. Obtain the normalized positive
frequency modes of the massive Klein-Gordon equation in M±. Assume that the scalar field is in
the vacuum state in M−. What is the expected number of particles with wavenumber k in M+?

8. A scalar field Φ in the Kruskal spacetime satisfies the Klein-Gordon equation ∇2Φ − µ2Φ = 0.
Assume that, in static Schwarzshild coordinates, Φ takes the form

Φ =
∞
∑

l=0

l
∑

m=−l

1

r
φlm(t, r)Yℓm(θ, φ)

where Yℓm are spherical harmonics. (i) Show that φlm satisfies the equation

[

∂2

∂t2
− d2

dr2∗
+ Vl(r∗)

]

φlm = 0 Vl(r∗) =

(

1− 2M

r

)(

l(l + 1)

r2
+

2M

r3
+ µ2

)
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For a mode of definite frequency ω: φlm = e−iωtRωlm(r) this reduces to the radial equation:

[

− d2

dr2∗
+ Vl(r∗)

]

Rωlm = ω2Rωlm

An instability of the black hole with respect to scalar field perturbations would be indicated by
the existence of a mode that is regular on H+ and decaying as r → ∞, with ω = ω1 + iω2 and
ω2 > 0 (so that the mode grows exponentially in time). Show that (i) the operator on the LHS
of the radial equation is self-adjoint for such modes; (ii) no such instability exists.

9. Use the fact that a Schwarzschild black hole radiates at the Hawking temperature TH = 1/(8πM)
(in units for which h̄, G, c, and Boltzmann’s constant all equal 1) to show that the thermal
equilibrium of a black hole with an infinite reservoir of radiation at temperature TH is unstable.

A finite reservoir of radiation of volume V at temperature T has an energy, Eres and entropy,
Sres given by Eres = σV T 4, Sres =

4
3σV T 3 where σ is a constant. A Schwarzschild black hole of

mass M is placed in the reservoir. Assuming that the black hole has entropy SBH = 4πM2 show
that the total entropy S = SBH + Sres is extremized for fixed total energy E = M +Eres, when
T = TH , Show that the extremum is a maximum if and only if V < Vc, where the critical value
of V is

Vc =
220π4E5

55σ

What happens as V passes from V < Vc to V > Vc, or vice-versa?

10. The specific heat of a charged black hole of mass M , at fixed charge Q, is

C ≡ TH

∂SBH

∂TH

∣

∣

∣

∣

Q

,

where TH is its Hawking temperature and SBH its entropy. Assuming that the entropy of a black
hole is given by SBH = 1

4A, where A is the area of the event horizon, show that the specific heat
of a Reissner-Nordstrom black hole is

C =
2SBH

√

M2 −Q2

(M − 2
√

M2 −Q2)
.

Hence show that C−1 changes sign when M passes through 2|Q|/
√
3.

Repeat the previous question for a Reissner-Nordstrom black hole. Specifically, show that the
critical reservoir volume, Vc, is infinite for |Q| ≤ M ≤ 2|Q|/

√
3. Why is this result to be expected

from your previous result for C?


