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1. Introduction and Background

We will discuss complex hyper-Kähler metrics with extra symmetry, with view to Joyce
structures. The main aim of the talk is to describe what they look like in local coordinates.

Joyce structures were introduced by Bridgeland [3] and may be viewed [5] as complex
hyper-Kähler metrics with extra symmetries expected to exist on X = TM where M is a
space of stability conditions of a triangulated CY3-category C satisfying some technical
assumptions. A Joyce structure has a distinguished adapted coordinate system, the period
coordinates (zi, θi) for X. The metric is written in terms of a scalar potential satisfying
a system of second order non-linear PDEs. An adapted coordinate system of this form
for a complex hyper-Kähler metric was first written down by Plebański (in the case of a
holomorphic metric on a four-dimensional complex manifold) [10].

We will impose various symmetries on the metric motivated by Joyce structures and
see what happens to the equations underlying the hyper-Kähler structure. Some of these
symmetries were axiomatised in the definition of a Joyce structure in [5]. The other
symmetries we impose are motivated by known constructions of Joyce structures [1],[4],[7].

2. Complex hyper-Kähler metrics

We will be concerned with complex hyper-Kähler metrics on a complex manifold X of
dimension 4n. These are holomorphic non-degenerate sections g of ⊙2T ∗X where TX
denotes the holomorphic tangent bundle of X, with holomorphic endomorphisms I, J,K
of TX satisfying

I2 = J2 = K2 = IJK = − IdTX ,(2.1)

I∗g = J∗g = K∗g = g

∇I = ∇J = ∇K = 0.

This differs from (Riemannian) hyper-Kähler geometry and there is no notion of signature.
Define endomorphisms N := J − iK and N∞ := J + iK. The distributions kerN and

kerN∞ define complementary foliations of rank 2n. Let M := X/ kerN and M∞ :=
X/ kerN∞. We call these the twistor fibres at zero and infinity respectively. Then
Ω0 = g(M, ·) pushes-down to a symplectic form on M .

As a note of notation let ηij be the standard symplectic matrix given by

η =

[
0 Idn

− Idn 0

]
and ηikη

jk = δij.
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Proposition 2.1 (Plebański normal form). Given any Darboux coordinates zi for M so
that

Ω0 := ηijdz
i ∧ dzj(2.2)

then there exist coordinates θi so that (zi, θi) give coordinates for X and

g = ηijdθ
i ⊙ dzj +

∂2P

∂θi∂θj
dzi ⊙ dzj.(2.3)

with

∂2P

∂θi∂zj
− ∂2P

∂θj∂zi
− ηkl

∂2P

∂θi∂θk
∂2P

∂θj∂θl
= 0.(2.4)

and furthermore setting

Uj =
∂

∂zj
+ ηkl

∂2P

∂θjθk
∂

∂θl
(2.5)

Vj =
∂

∂θj
(2.6)

we have J(Uj) = Vj and K(Uj) = iVj.

(2.4) is natural generalisation of Plebański’s second heavenly equation to 4n dimensions.
When n = 1 it is the reduction of the vacuum Einstein equation for an anti-self-dual holo-
morphic metric. We call such coordinates (zi, θi) Plebański coordinates for the complex
hyper-Kähler structure.

3. Joyce structures

For our purposes a Joyce structure will be a manifold M of complex dimensions 2n
equipped with:

• a holomorphic symplectic form ω,
• Darboux coordinates zi,
• a complex hyper-Kähler structure on X = TM such that π∗ω = Ω0, where π is
the canonical projection

satisfying the following symmetries

(1) The canonical tangent coordinates (zi, θi) are Plebański coordinates for the com-
plex hyper-Kähler structure.

(2) LEg = g where E = zi ∂
∂zi

.
(3) g is odd under simultaneously multiplying all the fibre coordinates by −1.
(4) g is invariant under translations1 in the fibres

θj 7→ θj + 2πi

We call M the base of the Joyce structure. M is identified as the space of stability
conditions in Joyce structures arising in DT theory.

We can write these conditions in terms of the potential P . Property (3) has the
remarkable consequence that

gJ := zi
∂P 3

∂θi∂θj∂θk

∣∣∣
θ=0

dzj ⊙ dzk(3.1)

defines a flat metric on M (if non-degenerate), and furthermore, the Levi-Civita connec-
tion ∇ of the metric g preserves tangents to the zero section yi = 0 and preserves gJ .

1In the literature: e.g. [3],[5],[7] one needs to allow for cases when g is invariant under translations by
a more general lattice
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In practice many of the examples of Joyce structures we construct have poles and it is a
work-in-progress to determine if gJ actually exists and is non-degenerate in these cases.
In fact we will see in some cases it vanishes.

Property (4) says that really the Joyce structure lives on a (C∗)2n bundle over M .

4. Einstein-Weyl?

Symmetry reductions of ASD metrics in four dimensions by (non-null) conformal
Killing vectors leads to Einstein-Weyl geometry on the space of orbits [9]. In the hyper-
Kähler case these reductions were studied by Dunajski and Tod in [8] and the Euler
vector field here, assuming it is non-null, fits into the setting discussed there.

As far as I understand there has been no chracterisation of the geometry on the space
of trajectories of a conformal Killing vector of a half-flat metric in higher dimensions.
The Einstein-Weyl one-form is defined by taking the Hodge-star of (∇[aEb)Ec] so the
construction would need to be completely different.

5. Holomorphic quadratic differentials and M∞

For the large class of Joyce structures in [1] coming from moduli of holomorphic qua-
dratic differentials on Riemann surfaces, the Euler vector field E has the property of
acting trivially on M∞. In other words, E should be tangent to kerN∞. Writing this out
in local coordinates

sj
∂

∂zj
+ sjηkl

∂2P

∂θj∂θk
∂

∂θl
= zi

∂

∂zi
.(5.1)

We come to the conclusion that E tangent to kerN∞ implies

zi
∂2P

∂θi∂θj
= 0.(5.2)

The first thing to note is that the gJ vanishes and E is a null vector: g(E,E) = 0.
Contracting (2.4) with zi then yields the linear system (using the homothety condition)

∂P

∂θi
+ zi

∂2P

∂θizj
= 0.(5.3)

If dim(X) = 4 (all of the Joyce structures that come from holomorphic quadratic differ-
entials have dim(X) = 8 or above) and ignoring properties (3) and (4) for the moment,
we can just solve for the metric. We obtain

g = ηijdθ
i ⊙ dzj + ηkpηlq

T
(
z1

z·θ ,
z2

z·θ

)
(z · θ)3

zkzl dzp ⊙ dzq(5.4)

where T is an arbitrary function. The metric is a generalisation of the Sparling-Tod
H-space [11].

6. Hyper-Lagrangians

The following objects are a feature of Joyce structures that have been constructed from
moduli of quadratic differentials:

Definition 6.1 (Projectable hyper-Lagrangian foliation). Let (X, g) be complex hyper-
Kähler manifold. Then B ⊆ TX is a hyper-Lagrangian foliation if B is a Frobenius
integrable distribution with each leaf Lagrangian for ΩI ,ΩJ ,ΩK. We say such a foliation
is projectable if B pushes-down to a (necessarily Lagrangian) foliation L of M .
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TakeM = Quad(CP1, {2n+5}) as in [7], then each quadratic differential ϕ = Q0(x)dx
2

defines a hyperelliptic curve Σ defined by y2 = Q0(x) equipped with a meromorphic 1-
form ψ = ydx. Differentiating ψ gives a map µ0 : TϕM → H1(Σ,C). Then B is given by
the unique hyper-Lagrangian lifts of Lϕ = m−1(H1,0(Σ,C)), ϕ ∈M .
Given such a foliation we can by Proposition ?? take Plebański coordinates (xi, yi)

adapted to (the generalisation of) the second heavenly equation such that the Lagrangian
L is given by holding xn+1, ..., x2n constant (we have freedom to choose such Darboux
coordinates on M). Then some algebra shows the unique hyper-Lagrangian distribution
in X pushing-down to L is

B := span
{ ∂

∂yi
,
∂

∂xi
+ ηjk

∂2P̂

∂yi∂yj
∂

∂yk

}n

i=1
(6.1)

where P̂ is the Plebański potential (not necessarily the same one!). Integrability implies
that

∂P̂

∂yi∂yj∂yk
= 0, i, j, k ≤ n.(6.2)

These adapted coordinates are related to the period coordinates by

yi =
∂xi

∂zj
θj.(6.3)

Meanwhile the Plebański potentials can be shown to be related by

P̂ = P + Φijk(x)y
iyjyk(6.4)

for some functions Φijk(x) on the base. The second derivatives of P with respect to yi are

periodic under lattice transformations and P̂ is quadratic in half the fibre coordinates.
We will use this to constrain the functional form of P̂ considerably.

7. Elliptic functions

In four dimensions we may write

P̂ = A(x1, x2, y2)y1y1 + 2B(x1, x2, y2)y1 + C(x1, x2, y2).

The heavenly equation decouples somewhat

2AAy2y2 − 4A2
y2 + Ay2x1 = 0(7.1)

2ABy2y2 − 4By2Ay2 +By2x1 − Ax2 = 0(7.2)

2ACy2y2 − 4B2
y2 + Cy2x1 − 2Bx2 = 0.(7.3)

After a bit of thought, the periodicity of P can be shown to imply that Ay2 is an elliptic
function of y1. It is also even by the symmetries of the Joyce structure. It follows it is a
rational expression in the Weierstrass ℘ function with periods

ω1 := 2πi
∂x2

∂z1
ω2 := 2πi

∂x2

∂z2
(7.4)

which are functions on M . In the case of the A2 Joyce structure when

M = Quad(CP1, 7)

we have written the metric of [4] in these coordinates which will correspond to a solution
of the above system. It has

Ay2 = − 1

℘′(y2;−4x2,−4x1)2
.(7.5)
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